12.等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1=-12,S5=S8,則當(dāng)Sn取得最小值時,n的值為( 。
A.6B.7C.6或7D.8

分析 由等差數(shù)列前n項(xiàng)和公式,列出方程求出公差d=2,由此能求出Sn,再利用配方法能求出當(dāng)Sn取得最小值時,n的值.

解答 解:∵等差數(shù)列{an}的前n項(xiàng)和為Sn,a1=-12,S5=S8
∴$-12×5+\frac{5×4}{2}d=-12×8+\frac{8×7}{2}d$,
解得d=2,
∴Sn=-12n+$\frac{n(n-1)}{2}×2$=n2-13n=(n-$\frac{13}{2}$)2-$\frac{169}{4}$,
∴當(dāng)Sn取得最小值時,n=6或n=7.
故選:C.

點(diǎn)評 本題考查等差數(shù)列的前n項(xiàng)和取最小值時,n的值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某學(xué)校研究性學(xué)習(xí)小組對該校高三學(xué)生視力情況進(jìn)行調(diào)查,在高三的全體1000名學(xué)生中隨機(jī)抽取了100名學(xué)生的體檢表,并得到如圖的頻率分布直方圖.
(Ⅰ)若直方圖中后四組的頻數(shù)成等差數(shù)列,計(jì)算高三全體學(xué)生視力在5.0以下的人數(shù),并估計(jì)這100名學(xué)生視力的中位數(shù)(精確到0.1);
(Ⅱ)學(xué)習(xí)小組成員發(fā)現(xiàn),學(xué)習(xí)成績突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績是否有關(guān)系,對高三全體學(xué)生成績名次在前50名和后50名的學(xué)生進(jìn)行了調(diào)查,得到如表1中數(shù)據(jù),根據(jù)表1及臨界值表2中的數(shù)據(jù),能否在犯錯的概率不超過0.05的前提下認(rèn)為視力與學(xué)習(xí)成績有關(guān)系?
表一
 年級名次
是否近視
前50名后50名
近視4234
不近視816
附:臨界值表2
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某單位在周一到周六的六天中安排4人值夜班,每人至少值一天,至多值兩天,值兩天的必須是相鄰的兩天,則不同的值班安排種數(shù)為144(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{x≤y}\\{x+y≤1}\end{array}\right.$,則z=2x+y-$\frac{1}{2}$的最大值是(  )
A.-$\frac{1}{2}$B.0C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.定積分$\int_0^π{({1+cos2x})}$dx的值為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若$\frac{{S}_{2016}}{2016}$-S1=2015,則數(shù)列{an}的公差為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)P是橢圓C:$\frac{x^2}{4}+\frac{y^2}{3}$=1上的動點(diǎn),則P到直線$\frac{x}{4}+\frac{y}{3}$=1的距離的最小值是(  )
A.$\frac{{\sqrt{21}-12}}{5}$B.$\frac{{12-\sqrt{21}}}{5}$C.$\frac{{2\sqrt{21}-12}}{5}$D.$\frac{{12-2\sqrt{21}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)f(x)=ex-$\frac{ax}{x+1}$(x>-1).
(1)當(dāng)a=1時,討論f(x)的單調(diào)性;
(2)當(dāng)a>0時,設(shè)f(x)在x=x0處取得最小值,求證:f(x0)≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在三棱錐P-ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=3,BE=$\frac{1}{2}$EC,AD=2DC,AE=$\sqrt{2}$.
(1)證明:DE⊥平面PAE;
(2)求二面角A-PE-B的余弦值.

查看答案和解析>>

同步練習(xí)冊答案