17.設(shè)等差數(shù)列{an}的前n項和為Sn,若$\frac{{S}_{2016}}{2016}$-S1=2015,則數(shù)列{an}的公差為2.

分析 利用等差數(shù)列的求和公式即可得出.

解答 解:設(shè)等差數(shù)列{an}的公差為d,
∵$\frac{{S}_{2016}}{2016}$-S1=2015,
∴a1+$\frac{2015}{2}$d-a1=2015,解得d=2.
故答案為:2.

點評 本題考查了等差數(shù)列的求和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

7.學校從參加高一年級期中考試的學生中抽出50名學生,并統(tǒng)計了他們的數(shù)學成績(成績均為整數(shù)且滿分為150分),數(shù)學成績分組及各組頻數(shù)如下:
[60,75),2;[75,90),3;[90,105),14;[105,120),15;[120,135),12;[135,150],4.
(1)在給出的樣本頻率分布表中,求A,B,C,D的值;
(2)估計成績在120分以上(含120分)學生的比例;
(3)為了幫助成績差的學生提高數(shù)學成績,學校決定成立“二幫一”小組,即從成績在[135,150]的學生中選兩位同學,共同幫助成績在[60,75)中的某一位同學.已知甲同學的成績?yōu)?2分,乙同學的成績?yōu)?40分,求甲、乙兩同學恰好被安排在同一小組的概率.
樣本頻率分布表:
分組頻數(shù)頻率
[60,75)20.04
[75,90)30.06
[90,105)140.28
[105,120)150.30
[120,135)AB
[135,150]40.08
合計CD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若關(guān)于x的方程x2+ax+a2-a-2=0的一根大于1,另一根小于1,則a的取值范圍為( 。
A.0<a<1B.a>-1C.-1<a<1D.a<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.某校對高三部分學生的數(shù)學質(zhì)檢成績作相對分析.

(1)按一定比例進行分層抽樣抽取了20名學生的數(shù)學成績,并用莖葉圖(圖1)記錄,但部分數(shù)據(jù)不小心丟失了,已知數(shù)學成績[70,90)的頻率是0.2,請補全表格并繪制相應(yīng)頻率分布直方圖(圖2).
 分數(shù)段(分)[50,70)[70,90)[90,110)[110,130)[130,150)
 $\frac{頻率}{組距}$ 
0.005
 
0.010
 
0.020
 
0.010
 
0.005
(2)為考察學生的物理成績與數(shù)學成績是否有關(guān)系,抽取了部分同學的數(shù)學成績與物理成績進行比較,得到統(tǒng)計數(shù)據(jù)如表:
  物理成績優(yōu)秀 物理成績一般合計 
 數(shù)學成績優(yōu)秀 15 3 18
 數(shù)學成績一般 5 17 22
 合計 2020 40 
能夠有多大的把握,認為物理成績優(yōu)秀與數(shù)學成績優(yōu)秀有關(guān)系?
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
 P(K2≥K0 0.05 0.01 0.005 0.001
 K0 3.481 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.等差數(shù)列{an}的前n項和為Sn,若a1=-12,S5=S8,則當Sn取得最小值時,n的值為( 。
A.6B.7C.6或7D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.某班生活委員為了解在春天本班同學感冒與性別是否相關(guān),他收集了3月份本班同學的感冒數(shù)據(jù),并制出下面一個2×2列聯(lián)表:
感冒不感冒合計
男生52732
女生91928
合計134760
參考數(shù)據(jù)
P(K2≥2.072)≈0.15
P(K2≥2.706)≈0.10
P(K2≥6.635)≈0.010
由K2的觀測值公式,可求得k=2.278,根據(jù)給出表格信息和參考數(shù)據(jù),下面判斷正確的是(  )
A.在犯錯概率不超過10%的前提下認為該班“感冒與性別有關(guān)”
B.在犯錯概率不超過10%的前提下不能認為該班“感冒與性別有關(guān)”
C.有15%的把握認為該班“感冒與性別有關(guān)”
D.在犯錯概率不超過10%的前提下認為該班“感冒與性別有關(guān)”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知等差數(shù)列{an}的前n項和為Sn=-n2+4n,則其公差d=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知n∈N*,數(shù)列{an}的前n項和為Sn,且2an-Sn=1.
(1)求證:數(shù)列{an}是等比數(shù)列,并求出通項公式;
(2)對于任意ai、aj∈{a1,a2,…,an}(其中1≤i≤n,1≤j≤n,i、j均為正整數(shù)),若ai和aj的所有乘積ai•aj的和記為Tn,試求$\lim_{x→∞}\frac{T_n}{4^n}$的值;
(3)設(shè)$1+{b_n}=3{log_2}{a_n},{c_n}={({-1})^{n+1}}{b_n}•{b_{n+1}}$,若數(shù)列{cn}的前n項和為Cn,是否存在這樣的實數(shù)t,使得對于所有的n都有${C_n}≥t{n^2}$成立,若存在,求出t的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知某幾何體的三視圖如圖所示,其中俯視圖是正三角形,則該幾何體的體積為( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

同步練習冊答案