已知數(shù)列{an}的相鄰兩項an,an+1是關(guān)于x 的方程x2-2n x+ bn=0 (n∈N*)的兩根,且a1=1.
(1)求數(shù)列{ an}和{bn}的通項公式;
(2)設(shè)Sn是數(shù)列{an}的前n項的和,問是否存在常數(shù)λ,使得bn-λSn>0對任意n∈N*都成立,若存在,求出λ的取值范圍;若不存在,請說明理由.
(1)證法1:∵an,an+1是關(guān)于x 的方程x2-2n x+ bn=0 (n∈N*)的兩根,
∴
由an+an+1=2n,得,故數(shù)列
是首項為,公比為-1的等比數(shù)列.
證法2:∵an,an+1是關(guān)于x 的方程x2-2n x+ bn=0 (n∈N*)的兩根,
∴
∵,
故數(shù)列是首項為,公比為-1的等比數(shù)列.
(2)解:由(1)得,即,
∴
∴Sn=a1+ a2+ a3+…+ an=[(2+22+23+…+2n)-[(-1)+ (-1)2+…+(-1)n]
,
要使得bn-λSn>0對任意n∈N*都成立,
即對任意n∈N*都成立.
①當(dāng)n為正奇數(shù)時,由(*)式得,
即,
∵2n+1-1>0,∴對任意正奇數(shù)n都成立.
當(dāng)且僅當(dāng)n=1時,有最小值1,∴λ<1.
①當(dāng)n為正奇數(shù)時,由(*)式得,
即,
∵2n+1-1>0,∴對任意正奇數(shù)n都成立.
當(dāng)且僅當(dāng)n=1時,有最小值1,∴λ<1.
②當(dāng)n為正偶數(shù)時,由(*)式得,
即,
∵2n-1>0,∴對任意正偶數(shù)n都成立.
當(dāng)且僅當(dāng)n=2時,有最小值1.5,∴λ<1.5.
綜上所述,存在常數(shù)λ,使得bn-λSn>0對任意n∈N*都成立,λ的取值范圍是(-∞,1).
科目:高中數(shù)學(xué) 來源: 題型:
函數(shù)( )
A.在上單調(diào)遞增 B.在上單調(diào)遞增,在上單調(diào)遞減
C.在上單調(diào)遞減 D.在上單調(diào)遞減,在上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
若不等式組表示的平面區(qū)域為,不等式表示的平面區(qū)域為.現(xiàn)隨機向區(qū)域內(nèi)撒下一粒豆子,則豆子落在區(qū)域內(nèi)的概率為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com