【題目】如圖,在平面直角坐標(biāo)系中,橢圓 ()的短軸長為2,橢圓上的點到右焦點距離的最大值為.過點作斜率為的直線交橢圓,兩點(),是線段的中點,直線交橢圓兩點.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若,,求的值;

(3)若存在直線,使得四邊形為平行四邊形,求的取值范圍.

【答案】(1);(2);(3.

【解析】

1)由題意列出關(guān)于a,bc的方程,解得ab則可得橢圓的方程.

2)聯(lián)立直線與橢圓的方程,利用韋達(dá)定理可得D的坐標(biāo),進而得到直線的方程,再與橢圓的方程聯(lián)立,可得M的的坐標(biāo),代入已知的向量關(guān)系式中,解得k即可.

3)聯(lián)立直線與橢圓的方程,利用韋達(dá)定理及,得到關(guān)于mk的不等關(guān)系式,再將四邊形為平行四邊形轉(zhuǎn)化為向量關(guān)系,得到mk的等量關(guān)系,代入不等式消去k可得m的范圍.

(1)由條件,,,

解得,,

所以橢圓的標(biāo)準(zhǔn)方程為.

(2)當(dāng)時,直線的方程為,

設(shè) ,

消去得:.

因為點在橢圓內(nèi),所以.

所以,所以.

所以,直線的方程為:.

消去得:,所以 .

因為,所以,

因為,解得.

(3)直線的方程為,

消去得:.

所以,即(*),

,所以.

因為,關(guān)于原點對稱,

由(2)易知,.

由四邊形為平行四邊形,所以,

可得,即.

由于將代入(*)式恒成立,

所以當(dāng)時,,

因為,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在長方體ABCDA1B1C1D1,若AB=BC,E,F分別是AB1BC1的中點,則下列結(jié)論中不成立的是(

A.EFBB1垂直B.EF⊥平面BDD1B1

C.EFC1D所成的角為45°D.EF∥平面A1B1C1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某書店剛剛上市了《中國古代數(shù)學(xué)史》,銷售前該書店擬定了5種單價進行試銷,每種單價(元)試銷l天,得到如表單價(元)與銷量(冊)數(shù)據(jù):

單價(元)

18

19

20

21

22

銷量(冊)

61

56

50

48

45

(l)根據(jù)表中數(shù)據(jù),請建立關(guān)于的回歸直線方程:

(2)預(yù)計今后的銷售中,銷量(冊)與單價(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價應(yīng)定為多少元?

附:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐中,底面為平行四邊形,側(cè)面 ,分別是的中點,已知,,.

(Ⅰ)證明:平面

(Ⅱ)證明:;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是兩條不同的直線,,是三個不同的平面,給出下列四個命題:

①若,則

②若,,則

③若,則

④若,,則

其中正確命題的序號是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓)的上頂點為,圓經(jīng)過點

(1)求橢圓的方程;

(2)過點作直線交橢圓,兩點,過點作直線的垂線交圓于另一點.若△PQN的面積為3,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量指數(shù)是檢測空氣質(zhì)量的重要參數(shù),其數(shù)值越大說明空氣污染狀況越嚴(yán)重,空氣質(zhì)量越差.某地環(huán)保部門統(tǒng)計了該地區(qū)某月1日至24日連續(xù)24天的空氣質(zhì)量指數(shù),根據(jù)得到的數(shù)據(jù)繪制出如圖所示的折線圖,則下列說法錯誤的是( )

A. 該地區(qū)在該月2日空氣質(zhì)量最好

B. 該地區(qū)在該月24日空氣質(zhì)量最差

C. 該地區(qū)從該月7日到12日持續(xù)增大

D. 該地區(qū)的空氣質(zhì)量指數(shù)與這段日期成負(fù)相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,(常數(shù)).

(I)當(dāng)的圖象相切時,求的值;

(Ⅱ)設(shè),討論上零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正三棱錐中,側(cè)棱長為3,底面邊長為2,EF分別為棱AB,CD的中點,則下列命題正確的是( )

A.EFAD所成角的正切值為B.EFAD所成角的正切值為

C.AB與面ACD所成角的余弦值為D.AB與面ACD所成角的余弦值為

查看答案和解析>>

同步練習(xí)冊答案