10.某網(wǎng)站針對2015年中國好聲音歌手A,B,C三人進(jìn)行網(wǎng)上投票,結(jié)果如下
觀眾年齡支持A支持B支持C
20歲以下100200600
20歲以上(含20歲)100100400
(1)在所有參與該活動的人中,用分層抽樣的方法抽取n人,其中有6人支持A,求n的值.
(2)在支持C的人中,用分層抽樣的方法抽取5人作為一個總體,從這5人中任意選取2人,求恰有1人在20歲以下的概率.

分析 (1)根據(jù)分層抽樣時,各層的抽樣比相等,結(jié)合已知構(gòu)造關(guān)于n的方程,解方程可得n值.
(2)計算出這5人中任意選取2人的情況總數(shù),及滿足恰有1人在20歲以下的情況數(shù),代入古典概率概率計算公式,可得答案.

解答 解:(1)∵利用層抽樣的方法抽取n個人時,從“支持A方案”的人中抽取了6人,
∴$\frac{6}{100+100}$=$\frac{n}{100+100+200+100+600+400}$=,
解得n=45;
(2)從“支持C方案”的人中,用分層抽樣的方法抽取的5人中,
年齡在20歲以下的有3人,分別記為1,2,3,年齡在20歲以上(含20歲)的有2人,記為a,b,
則這5人中任意選取2人,共有10種不同情況,分別為:(1,2),(1,3),(1,a),(1,b),(2,3),(2,a),(2,b),(3,a),(3,b),(a,b),
其中恰好有1人在20歲以下的事件有:
(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)共6種.
故恰有1人在20歲以下的概率P=$\frac{6}{10}$=$\frac{3}{5}$.

點評 本題考查的知識點是古典概型概率計算公式,其中熟練掌握利用古典概型概率計算公式求概率的步驟,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列定積分中,值等于零的是( 。
A.${∫}_{-1}^{2}$xdxB.${∫}_{-1}^{1}$xsin2xdxC.${∫}_{-1}^{1}$xsinxdxD.${∫}_{-1}^{1}$x2sin2xdx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.采用系統(tǒng)抽樣方法從480人中抽取16人做問卷調(diào)查,為此將他們隨即編號為1,2,…480,分組后在第一組采用簡單隨機(jī)抽樣的方法抽到的號碼為8,抽到的16人中,編號落在區(qū)間[1,160]的人做問卷A,編號落在區(qū)間[161,320]的人做問卷B,其余的做問卷C,則被抽到的16人中做問卷B的人數(shù)為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知$\overrightarrow a=(-1,\;3)$,$\overrightarrow b=(1,\;-1)$,那么$\overrightarrow a,\overrightarrow b$夾角的余弦值( 。
A.$-\frac{{2\sqrt{5}}}{5}$B.$-\frac{{\sqrt{5}}}{5}$C.-2D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)=5x,g(x)=ax2-x,若f(g(1))=1,則a=( 。
A.-1B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)圓C滿足三個條件①過原點;②圓心在y=x上;③截y軸所得的弦長為4,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若平面α的一個法向量為$\overrightarrow{n}$=(4,1,1),直線l的一個方向向量為$\overrightarrow{a}$=(-2,-3,3),則l與α所成角的正弦值為( 。
A.$-\frac{{\sqrt{11}}}{11}$B.$\frac{{\sqrt{11}}}{11}$C.$\frac{{\sqrt{110}}}{11}$D.$\frac{4\sqrt{11}}{33}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.石嘴山市在每年的春節(jié)后,市政府都會發(fā)動公務(wù)員參與到植樹活動中去.林管部門在植樹前,為保證樹苗的質(zhì)量,都會在植樹前對樹苗進(jìn)行檢測.現(xiàn)從甲乙兩種樹苗中各抽測了10株樹苗的高度,量出的高度如下(單位:厘米)
甲:37,21,31,20,29,19,32,23,25,33
乙:10,30,47,27,46,14,26,10,44,46
(1)根據(jù)抽測結(jié)果,完成答題卷中的莖葉圖(圖1),并根據(jù)你填寫的莖葉圖,對甲、乙兩種樹苗的高度作比較,寫出兩個統(tǒng)計結(jié)論;
(2)設(shè)抽測的10株甲種樹苗高度平均值為$\overline x$,將這10株樹苗的高度依次輸入按程序框圖(圖2)進(jìn)行的運算,問輸出的S大小為多少?并說明S的統(tǒng)計學(xué)意義.
(3)現(xiàn)從10株甲種樹苗中隨機(jī)抽取兩株高度不低于25cm的樹苗,求高度為33cm的樹苗被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若x,y滿足約束條件$\left\{{\begin{array}{l}{y-x≤1}\\{x+y≤3}\\{y≥1}\end{array}}\right.$,則$z=\frac{y}{x+2}$的最大值為$\frac{2}{3}$.

查看答案和解析>>

同步練習(xí)冊答案