9.若二項式${({x^2}-\frac{1}{x})^n}$的展開式共有6項,則此展開式中含x4的項的系數(shù)是10.

分析 根據(jù)題意求得n=5,再在二項展開式的通項公式中,令x的冪指數(shù)等于4,求得r的值,可得展開式中含x4的項的系數(shù).

解答 解:∵二項式${({x^2}-\frac{1}{x})^n}$的展開式共有6項,故n=5,
則此展開式的通項公式為 Tr+1=${C}_{5}^{r}$•(-1)r•x10-3r,令10-3r=4,∴r=2,
中含x4的項的系數(shù)${C}_{5}^{2}$=10,
故答案為:10.

點評 本題主要考查二項式定理的應用,二項展開式的通項公式,求展開式中某項的系數(shù),二項式系數(shù)的性質(zhì),屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.判斷兩個變量y與x是否相關時,選擇了4個不同的模型,它們的相關指數(shù)R2分別為:模型1的相關指數(shù)R2為0.86,模型2的相關指數(shù)R2為0.68,模型3的相關指數(shù)R2為0.88,模型4的相關指數(shù)R2為0.66.其中擬合效果最好的模型是( 。
A.模型1B.模型2C.模型3D.模型4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知向量$\overrightarrow{a}$=(1,0,-1),$\overrightarrow$=(-1,-1,0),則|$\overrightarrow{a}$|的值是$\sqrt{2}$,向量$\overrightarrow{a}$與$\overrightarrow$之間的夾角是120°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(-x),x<0}\\{{3}^{x-2},x≥0}\end{array}\right.$,且f(a)=3,則f(2)的值是1,實數(shù)a的值是3或-27.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)$f(x)=4sinxcos({x+\frac{π}{3}})+4\sqrt{3}{sin^2}x-\sqrt{3}$.
(Ⅰ)求$f({\frac{π}{3}})$的值;
(Ⅱ)求f(x)圖象的對稱軸方程;
(Ⅲ)求f(x)在$[{-\frac{π}{4}\;,\;\frac{π}{3}}]$上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.若x∈R,則“x>1”是“$\frac{1}{x}<1$”的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.下列各式錯誤的是( 。
A.30.8>30.7B.log0.50.4>log0.50.6
C.0.75-0.1<0.750.1D.log2$\sqrt{3}$>log3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.設U=R,A={x|2x<1},B={x|log2x<0},則B∩(∁UA)=( 。
A.{x|x<0}B.{x|x>1}C.{x|0<x<1}D.{x|0<x≤1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.偶函數(shù)f(x)的定義域為R,且在[0,+∞)上是減函數(shù),則f(-$\frac{3}{4}$)≥f(a2-a+1)(填“≥”、“≤”或“>”、“<”或“=”)

查看答案和解析>>

同步練習冊答案