分析 先作出函數(shù)f(x)=|log2|x-3||的圖象,令t=f(x),那么方程[f(x)]2+af(x)+b=0轉(zhuǎn)化成了t2+at+b=0,因為方程[f(x)]2+af(x)+b=0有6個不同的實數(shù)解,則t2+at+b=0有一個正根和一個零根.最小實數(shù)解為-5,即f(-5)=3,從而得到方程t2+at+b=0的兩個根,利用韋達(dá)定理,即可求得a+b的值.
解答 解:先作出函數(shù)f(x)=|log2|x-3||的圖象,
∵關(guān)于x的方程[f(x)]2+af(x)+b=0有6個不同的實數(shù)解,
令t=f(x),那么方程[f(x)]2+af(x)+b=0轉(zhuǎn)化成了t2+at+b=0,
則方程則t2+at+b=0有一個正根和一個零根
又∵最小實數(shù)解為-5,
∴f(-5)=3,
∴方程t2+at+b=0的兩個根分別為:0,3;
利用韋達(dá)定理,a=-3,b=0
所以a+b=-3
故答案為-3.
點評 本題考查了函數(shù)與方程的綜合運用,同時考查了方程的根與函數(shù)零點的關(guān)系.屬于中檔偏難的題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{6}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 1 | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | 1 | C. | -1 | D. | 1或-3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [4,+∞) | B. | (4,+∞) | C. | [2,+∞) | D. | (2,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com