6.已知復(fù)數(shù)Z滿足(1-i)z=1+i,則復(fù)數(shù)|Z|=( 。
A.$\sqrt{2}$B.1C.$\sqrt{3}$D.2

分析 直接利用復(fù)數(shù)的模的運(yùn)算法則化簡(jiǎn)求解即可.

解答 解:復(fù)數(shù)Z滿足(1-i)z=1+i,
可得|(1-i)||z|=|1+i|,
即:$\sqrt{2}|z|=\sqrt{2}$,
|z|=1.
故選:B.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的模的求法,運(yùn)算法則的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在數(shù)列{an}中,a1=2,a2=4,且當(dāng)n≥2時(shí),an2=an-1aa+1,n∈N;
(1)求數(shù)列{an}的通項(xiàng)公式an
(2)若bn=(2n-1)an,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)a>b>1,c<0,給出下列四個(gè)結(jié)論:
①$\frac{c}{a}$>$\frac{c}$;
②ac>bc
③(1-c)a<(1-c)b;
④logb(a-c)>loga(b-c).
其中正確結(jié)論有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知$α,β∈(\frac{11π}{4},\frac{13π}{4})$,則“tan2α>tan2β”的一個(gè)充分不必要條件是(  )
A.4α+1>4β+2B.${log_{\frac{1}{2}}}2α<{log_{\frac{1}{2}}}2β$
C.(α+1)3>β3D.α=β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)f(x)=|log2|x-3||,且關(guān)于x的方程[f(x)]2+af(x)+b=0有6個(gè)不同的實(shí)數(shù)解,若最小實(shí)數(shù)解
為-5,則a+b的值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x2-2ax-3
(1)若函數(shù)在f(x)的單調(diào)遞減區(qū)間(-∞,2],求函數(shù)f(x)在區(qū)間[3,5]上的最大值.
(2)若函數(shù)在f(x)在單區(qū)間(-∞,2]上是單調(diào)遞減,求函數(shù)f(1)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若log2x=4,則${x^{\frac{1}{2}}}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知甲、乙兩人下棋,和棋的概率為$\frac{1}{2}$,乙勝的概率為$\frac{1}{3}$,則甲勝的概率為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知曲線C的極坐標(biāo)方程是ρ=2,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}-\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)).
(1)寫出直線l的直角坐標(biāo)方程與曲線C的普通方程
(2)設(shè)曲線C經(jīng)過(guò)伸縮變換$\left\{{\begin{array}{l}{x'=x}\\{y'=2y}\end{array}}\right.$,得到曲線C',設(shè)曲線C'上任一點(diǎn)M(x0,y0),求M到的直線l的距離的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案