已知正四面體ABCD的棱長為a,點O是△BCD的中心,點M是CD中點.
(1)求點A到面BCD的距離;
(2)求AB與面BCD所成角的正弦值.
(1)∵棱長為a的正四面體中
AB=BC=CD=BD=AC=AD=a
在等邊三角形BCD中,CD邊的上高BM=
3
2
a
過A作底面BCD上的高,則垂足O為底面BCD的重心
則BO=
2
3
BM=
3
3
a

則AO=
AB2-BO2
=
6
3
a,
∴點A到面BCD的距離OA=
6
3
a
(說明:直接由公式計算得出正確結果不扣分)…6分
(2)由(1)可得∠ABO即為AB與面BCD所成角
在Rt△OAB中,OA=
6
3
a,AB=a
∴sin∠ABO=
OA
AB
=
6
3

即AB與面BCD所成角的正弦值為
6
3
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,平面AC⊥平面AE,且四邊形ABCD與四邊形ABEF都是正方形,則異面直線AC與BF所成角的大小是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=2.
(1)求證:SA⊥CD;
(2)求異面直線SB與CD所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設OA是球O的半徑,M是OA的中點,過M且與OA成450角的平面截球O的表面得到圓C,若圓C的面積等于
8
,則球O的半徑等于______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知正△ABC的頂點A在平面α上,頂點B、C在平面α的同一側,D為BC的中點,若△ABC在平面α上的投影是以A為直角頂點的三角形,則直線AD與平面α所成角的正弦值的范圍為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知四面體ABCD的六條棱長都是1,則直線AD與平面ABC的夾角的余弦值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,正三棱柱ABC-A1B1C1中,AB=AA1,則AC1與平面BB1C1C所成的角的正弦值為( 。
A.
2
2
B.
15
5
C.
6
4
D.
6
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,三棱錐P-ABC中,∠ACB=90°,PA⊥底面ABC.
(I)求證:平面PAC⊥平面PBC;
(II)若AC=BC=PA,M是PB的中點,求AM與平面PBC所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,已知等邊三角形ABC與正方形ABDE有一公共邊AB,二面角C-AB-D的余弦值為
3
3
,M是AC的中點,則EM,DE所成角的余弦值等于______.

查看答案和解析>>

同步練習冊答案