6.如圖所示,在等腰梯形ABCD中,AD∥BC,AD=CD=AB=2,∠ABC=60°,將三角形ABD沿BD折起,使點A在平面BCD上的投影G落在BD上.
(1)求證:平面ACD⊥平面ABD;
(2)若E為AC的中點,求三棱錐G-ADE的體積.

分析 (1)利用平面與平面垂直的性質(zhì)定理,推出AG⊥BD,通過CD⊥BD,證明平面ACD⊥平面ABD;
(2)利用等體積法,轉(zhuǎn)化求解所求三棱錐G-ADE的體積即可.

解答 解:(1)證明:在等腰梯形ABCD中,AD∥BC,AD=CD=AB=2,∠ABC=60°,
可知∠ABD=30°,則BD⊥CD,將三角形ABD沿BD折起,使點A在平面BCD上的投影G落在BD上.
可得:CD⊥平面ABD,
CD?平面ABD,
所以平面ACD⊥平面ABD;
(2)E為AC的中點,所以A,C到平面DEG距離相等,所求三棱錐G-ADE的體積.就是G-CDE的體積,
VE-CGD=$\frac{1}{3}$${{S}_{△}}_{CDG}•\frac{1}{2}AG$=$\frac{1}{3}×\frac{1}{2}CD•\frac{1}{2}BD×\frac{1}{2}ABsin30°$=$\frac{1}{3}×\frac{1}{2}×2×\sqrt{3}×\frac{1}{2}×2×\frac{1}{2}$=$\frac{\sqrt{3}}{6}$.
三棱錐G-ADE的體積為:$\frac{\sqrt{3}}{6}$.

點評 本題考查平面與平面垂直的判定定理以及性質(zhì)定理的應(yīng)用,幾何體的體積的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知正項數(shù)列{an}的前n項和為Sn,且2Sn=(an-1)(an+2),
(1)求數(shù)列{an}的通項公式
(2)設(shè)數(shù)列{$\frac{(n-1)•{2}^{n}}{n{a}_{n}}$}的前n項和為Tn,試比較Tn與$\frac{{2}^{n+1}(18-n)-2n-2}{n+1}$的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知直線kx-y+2k-1=0(k∈R)恒過圓C的圓心,且圓C的半徑為2,則圓C的方程是(x+2)2+(y+1)2=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)中xOy中,曲線C1的參數(shù)方程是$\left\{\begin{array}{l}{x=1-2t}\\{y=2t}\end{array}\right.$(t是參數(shù)),曲線C2的普通方程是x2+y2=1,以原點O為極點,x軸的正半軸為極軸建立直角坐標(biāo)系.
(Ⅰ)寫出C1的普通方程和C2的極坐標(biāo)方程;
(Ⅱ)A是C1上的點,射線OA與C2相交于點B,點P在射線OA上,|OA|、|OB|、|OP|成等比數(shù)列.求點P軌跡的極坐標(biāo)方程,并將其化成直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(-∞,0)時,不等式f(x)+xf′(x)<0恒成立,若a=30.3f(30.3),b=(logπ3)f(logπ3),c=(${log}_{3}\frac{1}{3}$)f(${log}_{3}\frac{1}{3}$),則a,b,c的大小關(guān)系(用“>”連接)是a>c>b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$是向量,在下列命題中,正確的是⑤.
①若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$;  
②|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$|
③($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$);
④$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow$•$\overrightarrow{c}$,則$\overrightarrow{a}$=$\overrightarrow{c}$;      
⑤|$\overrightarrow{a}$+$\overrightarrow$|2=($\overrightarrow{a}$+$\overrightarrow$)2;      
⑥若$\overrightarrow{a}$⊥$\overrightarrow$,$\overrightarrow$⊥$\overrightarrow{c}$,則$\overrightarrow{a}$⊥$\overrightarrow{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=x2(x-a),其中a∈R.
(1)若a=1,求曲線y=f(x)的過點(1,0)的切線方程.
(2)討論函數(shù)y=f(x)在[0,4]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)y=sin(ωx-$\frac{π}{3}$)cos(ωx-$\frac{π}{3}$)的周期為2,且ω>0,則ω=( 。
A.1B.$\frac{π}{4}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列四個命題:
①若“p∧q”是假命題,則p,q都是假命題;
②在頻率分布直方圖中,眾數(shù)左邊和右邊的直方圖面積相等;
③在回歸直線$\widehat{y}$=-0.5x+3中,當(dāng)解釋變量x每增加一個單位時,預(yù)報變量$\widehat{y}$平均減少0.5個單位;
④y=|sin(x+1)|的最小正周期是π.
其中正確的命題序號是( 。
A.①②B.②③C.③④D.①③

查看答案和解析>>

同步練習(xí)冊答案