已知等差數(shù)列{}的前n項(xiàng)和為Sn,公差d≠0,且S3=9,a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{}的通項(xiàng)公式;
(2)設(shè)=,求數(shù)列{}的前n項(xiàng)和.
(1)an=n+1;(2).
解析試題分析:本題主要考查等差數(shù)列的通項(xiàng)公式、等比數(shù)列的通項(xiàng)公式、等差數(shù)列的前n項(xiàng)和公式、等比數(shù)列的前n項(xiàng)和公式、等比中項(xiàng)等數(shù)學(xué)知識,考查學(xué)生的分析問題的能力和計算能力.第一問,先利用等比中項(xiàng)寫出,再用等差數(shù)列的通項(xiàng)公式將和展開,用等差數(shù)列的前n項(xiàng)和將展開,兩式聯(lián)立,求出和,再寫出通項(xiàng)公式即可;第二問,將第一問的結(jié)果代入,化簡表達(dá)式,利用等比數(shù)列的定義證明為等比數(shù)列,再利用等比數(shù)列的前n項(xiàng)和公式計算.
試題解析:(1),即(a1+2d)2=a1(a1+6d),化簡得,d=0(舍去).
∴,得a1=2,d=1.
∴an=a1+(n-1)d=2+(n-1)=n+1,即an=n+1.(6分)
(2)∵bn=2an=2n+1,∴b1=4,.
∴{bn}是以4為首項(xiàng),2為公比的等比數(shù)列,
∴.(12分)
考點(diǎn):1.等比中項(xiàng);2.等差數(shù)列的通項(xiàng)公式;3.等差數(shù)列的前n項(xiàng)和公式;4.等比數(shù)列的定義;5.等比數(shù)列的前n項(xiàng)和.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知正項(xiàng)數(shù)列中,,前n項(xiàng)和為,當(dāng)時,有.(1)求數(shù)列的通項(xiàng)公式;
(2)記是數(shù)列的前項(xiàng)和,若的等比中項(xiàng),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列為等差數(shù)列,其公差d不為0,和的等差中項(xiàng)為11,且,令,數(shù)列的前n項(xiàng)和為.
(1)求及;
(2)是否存在正整數(shù)m,n(1<m<n),使得成等比數(shù)列?若存在,求出所有的m,n的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an},,,記,,
,若對于任意,A(n),B(n),C(n)成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{|an|}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知是公比為的等比數(shù)列,且成等差數(shù)列.
⑴求的值;
⑵設(shè)是以為首項(xiàng),為公差的等差數(shù)列,求的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,其前項(xiàng)和為,滿足.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn-Sn-1+2SnSn-1=0(n≥2),a1=.
(1)求證:是等差數(shù)列;
(2)求an的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=12,S12>0,S13<0.
(1)求公差d的取值范圍.
(2)求{an}前n項(xiàng)和Sn最大時n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com