15.已知函數(shù)$f(x)={sin^2}x+\sqrt{3}sinxcosx-\frac{1}{2}$.
(1)求f(x)單調(diào)遞減區(qū)間;
(2)已知a,b,c分別為△ABC內(nèi)角,A,B,C的對(duì)邊,$a=2\sqrt{3},c=4,若f(A)$是f(x)在(0,π)上的最大值,求△ABC的面積.

分析 (1)由三角函數(shù)公式化簡可得f(x)=sin(2x-$\frac{π}{6}$),解不等式2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$可可得單調(diào)減區(qū)間;
(2)由題意可得A=$\frac{π}{3}$,由余弦定理可得b=2,代值計(jì)算可.

解答 解:(1)化簡可得f(x)=sin2x+$\sqrt{3}$sinxcosx-$\frac{1}{2}$.
=$\frac{1}{2}$(1-cos2x)+$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x
=sin(2x-$\frac{π}{6}$),
由2kπ+$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{3π}{2}$可得kπ+$\frac{π}{3}$≤x≤kπ+$\frac{5π}{6}$,
∴f(x)的單調(diào)減區(qū)間為[kπ+$\frac{π}{3}$,kπ+$\frac{5π}{6}$](k∈Z);
(2)由(1)知f(x)=sin(2x-$\frac{π}{6}$),
當(dāng)x∈(0,π)時(shí),-$\frac{π}{6}$<2x-$\frac{π}{6}$<$\frac{11π}{6}$,
結(jié)合正弦函數(shù)的圖象,當(dāng)2x-$\frac{π}{6}$=$\frac{π}{2}$,即x=$\frac{π}{3}$時(shí),f(x)取得最大值,
∵f(A)是f(x)在(0,π)上的最大值,
∴A=$\frac{π}{3}$,
在△ABC中,由余弦定理可得a2=b2+c2-2bccosA,
即12=b2+16-2×4b×$\frac{1}{2}$,
解得b=2,
∴△ABC的面積S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×2×4sin$\frac{π}{3}$=2$\sqrt{3}$.

點(diǎn)評(píng) 本題考查解三角形,涉及兩角和與差的三角函數(shù)公式余弦定理以及三角形的面積,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知點(diǎn)P是△ABC的中位線EF上任意一點(diǎn),且EF∥BC,實(shí)數(shù)x,y滿足$\overrightarrow{PA}+x\overrightarrow{PB}+y\overrightarrow{PC}=\overrightarrow 0$,設(shè)△ABC,△PBC,△PCA,△PAB的面積分別為S,S1,S2,S3,記$\frac{S_1}{S}={λ_1}$,$\frac{S_2}{S}={λ_2}$,$\frac{S_3}{S}={λ_3}$,則λ2•λ3取最大值時(shí),3x+y的值為( 。
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知曲線C上的點(diǎn)到點(diǎn)F(0,1)的距離比它到直線y=-3的距離小2.
(1)求曲線C的方程;
(2)過點(diǎn)F且斜率為k的直線l交曲線C于A,B兩點(diǎn),交圓F:x2+(y-1)2=1于M,N兩點(diǎn)(A,M兩點(diǎn)相鄰).
①若$\overrightarrow{BF}$=λ$\overrightarrow{BA}$,當(dāng)λ∈[$\frac{1}{2}$,$\frac{2}{3}$]時(shí),求k的取值范圍;
②過A,B兩點(diǎn)分別作曲線C的切線l1,l2,兩切線交于點(diǎn)P,求△AMP與△BNP面積之積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知偶函數(shù)f(x)的定義域?yàn)镽,且在(-∞,0)上是增函數(shù),則f(-$\frac{3}{4}$)與f(a2-a+1)的大小關(guān)系為( 。
A.f(-$\frac{3}{4}$)<f(a2-a+1)B.f(-$\frac{3}{4}$)>f(a2-a+1)C.f(-$\frac{3}{4}$)≤f(a2-a+1)D.f(-$\frac{3}{4}$)≥f(a2-a+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若(1+2x)n(n∈N*)二項(xiàng)式展開式中的各項(xiàng)系數(shù)之和為an,其二項(xiàng)式系數(shù)之和為bn,則$\lim_{n→∞}\frac{{{b_{n+1}}-{a_n}}}{{{a_{n+1}}+{b_n}}}$=$-\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一個(gè)透明密閉的正方體容器中,恰好盛有該容器一半容積的水,任意轉(zhuǎn)動(dòng)這個(gè)正方體,則水面在容器中的形狀可以是:(1)三角形;(2)四邊形;(3)五邊形;(4)六邊形,其中正確的結(jié)論是(  )
A.(1)(3)B.(2)(4)C.(2)(3)(4)D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四棱錐中P-ABCD中,底面ABCD是菱形,且∠DAB=60°,PA=PD,M為CD的中點(diǎn),平面PAD⊥平面ABCD.
(1)求證:BD⊥PM;
(2)若∠APD=90°,PA=$\sqrt{2}$,求點(diǎn)A到平面PBM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=xlnx+$\frac{a}{x}$(a∈R).
(1)當(dāng)a=0時(shí),求曲線y=f(x)在(1,f(1))處的切線方程;
(2)求證:當(dāng)a≥1,f(x)≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x+1)是偶函數(shù),則函數(shù)y=f(x)的圖象關(guān)于( 。
A.直線x=1對(duì)稱B.直線x=-1對(duì)稱C.點(diǎn)(1,0)對(duì)稱D.點(diǎn)(-1,0)對(duì)稱

查看答案和解析>>

同步練習(xí)冊(cè)答案