A. | $\frac{1}{2}$ | B. | $\frac{3}{2}$ | C. | 1 | D. | 2 |
分析 根據(jù)中位線的性質(zhì)得出${λ}_{1}=\frac{1}{2}$,${λ}_{2}+{λ}_{3}=\frac{1}{2}$,利用基本不等式得出λ2•λ3取最大值時P為EF的中點,用$\overrightarrow{PB},\overrightarrow{PC}$表示出$\overrightarrow{PA}$即可得出x,y的值.
解答 解:由題意可知:λ1+λ2+λ3=1,
∵P是△ABC的中位線EF上任意一點,且EF∥BC,
∴${λ}_{1}=\frac{1}{2}$,
∴${λ}_{2}+{λ}_{3}=\frac{1}{2}$,
∴λ2λ3≤($\frac{{λ}_{2}+{λ}_{3}}{2}$)2=$\frac{1}{16}$,
當且僅當λ2=λ3=$\frac{1}{4}$時取等號,
∴λ2•λ3取最大值時P為EF的中點,
延長AP交BC于M,則M為BC的中點,
∴PA=PM,
∴$\overrightarrow{PA}$=-$\overrightarrow{PM}$=-$\frac{1}{2}$($\overrightarrow{PB}+\overrightarrow{PC}$),
又∵$\overrightarrow{PA}+x\overrightarrow{PB}+y\overrightarrow{PC}=\overrightarrow 0$,
∴x=y=$\frac{1}{2}$,
∴3x+y=2.
故選D.
點評 本題考查了平面向量的基本定理,基本不等式的應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | -4 | C. | -3 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 6 | C. | 12 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | P<N<M | B. | P<M<N | C. | M<P<N | D. | N<P<M |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | $\sqrt{3}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2016 | B. | 2017 | C. | log22017 | D. | $\frac{2017}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com