分析 (1)由正弦定理及三角函數(shù)恒等變換的應(yīng)用化簡已知等式可得:2sinAcosB=-sinA,結(jié)合sinA>0,即可解得B的值.
(2)利用余弦定理及(1)可得b2=49=64-ac,可得ac=15,結(jié)合a+c=8,即可求得a、c的值.
解答 解:(1)由正弦定理可得:(2sinA+sinC)cosB=-sinBcosC,
∴2sinAcosB=-sinBcosC-cosBsinC=-sin(B+C)=-sinA,
又∵sinA>0,∴$cosB=-\frac{1}{2}$,
∵B∈(0,π),
∴$B=\frac{2π}{3}$…(7分)
(2)b2=49=a2+c2-2accosB=a2+c2+ac=(a+c)2-ac=64-ac,
∴ac=15,
又∵a+c=8,∴$\left\{\begin{array}{l}a=3\\ c=5\end{array}\right.或\left\{\begin{array}{l}a=5\\ c=3\end{array}\right.$…(14分)
點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理及三角函數(shù)恒等變換的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -5 | B. | -11 | C. | -29 | D. | -37 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com