4.若命題$P:?x∈R,x_0^2+2{x_0}+3≤0$,則命題P的否定¬P是?x∈R,x2+2x+3>0.

分析 直接利用特稱命題的否定是全稱命題,寫出結(jié)果即可.

解答 解:因?yàn)樘胤Q命題的否定是全稱命題,
所以命題$P:?x∈R,x_0^2+2{x_0}+3≤0$,
則命題P的否定¬P是:?x∈R,x2+2x+3>0,
故答案為:?x∈R,x2+2x+3>0.

點(diǎn)評(píng) 本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)直線l與曲線C1:y=ex和曲線C2:y=-$\frac{1}{{e}^{x}}$均相切,切點(diǎn)分別為A(x1,y1),B(x2,y2),則y1y2=-e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.方程x2+2x-1=0的解可視為函數(shù)y=x+2的圖象與函數(shù)$y=\frac{1}{x}$的圖象交點(diǎn)的橫坐標(biāo),若方程x4+ax-4=0的各個(gè)實(shí)根x1,x2,…,xk(k≤4)所對(duì)應(yīng)的點(diǎn)$({x_i},\frac{4}{x_i})$(i=1,2,…,k)均在直線y=x的同側(cè),則實(shí)數(shù)a的取值范圍是(-∞,-6)∪(6,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知向量$\overrightarrow{a}$=(2cos2x,$\sqrt{3}$),$\overrightarrow$=(1,sin2x),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$-1.
(Ⅰ)求函數(shù)f(x)的最小正周期以及單調(diào)遞增區(qū)間;
(Ⅱ)求方程f(x)=k,(0<k<2),在$[-\frac{π}{12},\frac{23π}{12}]$內(nèi)的所有實(shí)數(shù)根之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an},{bn}中,a1=1,an+1-(n+1)an=0,${b_1}^3+{b_2}^3+…+{b_n}^3={({{b_1}+{b_2}+…+{b_n}})^2}$且bn>0,n∈N*.記n的階乘n(n-1)(n-2)…3•2•1=n!
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若${c_n}=\frac{b_n}{{a{\;}_{n+1}}}$,求證:${c_1}+{c_2}+…+{c_n}≥\frac{n}{n+1}{\;}_{\;}{\;}_{\;}(n∈{N^*})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知集合A={-1,1,2,4},B={-1,0,2},則A∩B={-1,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.若關(guān)于x的方程lg(x2+ax)=1在x∈[1,5]上有解,則實(shí)數(shù)a的取值范圍為[-3,9].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.定義在R上的奇函數(shù)f(x) 滿足f(x-2)=-f(x),則下列結(jié)論正確的是(  )
A.f(-2012)>f(2014)B.f(-2012)<f(2014)C.f(-2012)=f(2014)D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若非零實(shí)數(shù)a,b,c滿足a>b>c,則一定成立的不等式是( 。
A.ac>bcB.ab>acC.a-|c|>b-|c|D.$\frac{1}{a}<\frac{1}<\frac{1}{c}$

查看答案和解析>>

同步練習(xí)冊(cè)答案