7.直線方程為(3a+2)x+y+8=0,若直線不過第二象限,則a的取值范圍是$(-∞,-\frac{2}{3}]$.

分析 直線方程為(3a+2)x+y+8=0,在y軸上的截距為-8,直線不過第二象限,可得直線的斜率為正或0,即可得出.

解答 解:直線方程為(3a+2)x+y+8=0,在y軸上的截距為-8,直線不過第二象限,
∴直線的斜率為正或0,即-(3a+2)≥0,解得a≤-$\frac{2}{3}$.
故答案為:$(-∞,-\frac{2}{3}]$.

點評 本題考查了直線的方程及其應用,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.已知直線mx+y-1=0與直線x+(3-2m)y=0互相垂直,則實數(shù)m的值3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在△ABC中,內角A,B,C的對邊分別為a,b,c,且a>c.已知$\overrightarrow{AB}$•$\overrightarrow{BC}$=-2,cosB=$\frac{1}{3}$,b=3.求:
(Ⅰ)a和c的值;
(Ⅱ)cos(B-C)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知向量$\overrightarrow a=(x-z,1)$,$\overrightarrow b=(2,y+z)$,且$\overrightarrow a⊥\overrightarrow b$,若x,y滿足約束條件$\left\{{\begin{array}{l}{y≤x}\\{x+y≥2}\\{y≥3x-6}\end{array}}\right.$,則z的最小值為(  )
A.3B.2C.9D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.不等式3tanx+$\sqrt{3}$>0的解集是( 。
A.$(-\frac{π}{6}+kπ,\frac{π}{6}+kπ)k∈Z$B.$(-\frac{π}{6}+kπ,\frac{π}{3}+kπ)k∈Z$C.$(-\frac{π}{2}+kπ,\frac{π}{6}+kπ)k∈Z$D.$(-\frac{π}{6}+kπ,\frac{π}{2}+kπ)k∈Z$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.△ABC在內角A、B、C所對的邊分別為a,b,c;向量$\overrightarrow{m}$=(cosA,a)與$\overrightarrow{n}$=(sinB,$\sqrt{3}$b)平行.
(1)求A;
(2)若$a=\sqrt{7},b=2$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知△ABC的內角A,B,C所對的邊分別為a,b,c,向量$\overrightarrow{m}$=(2sin B,-$\sqrt{3}$),$\overrightarrow{n}$=(cos2B,2cos2$\frac{B}{2}$-1),且$\overrightarrow{m}$∥$\overrightarrow{n}$∥n,則銳角B的值為(  )
A.$\frac{2π}{3}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.關于下列命題:
①函數(shù)$y=cos({2x+\frac{π}{3}})$的一條對稱軸為直線:$x=-\frac{π}{6}$;
②函數(shù)$y=cos2({\frac{π}{3}-x})$是偶函數(shù);
③函數(shù)$y=4sin({2x-\frac{π}{3}})$的一個對稱中心是$({\frac{π}{6},0})$;
④函數(shù)$y=sin({x+\frac{π}{4}})$在閉區(qū)間$[{-\frac{π}{2},\frac{π}{2}}]$上是增函數(shù)
寫出所有所有正確的命題的序號:①③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.將函數(shù)y=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{12}$個單位長度后,所得曲線的一部分如圖所示,則ω,φ的值分別為( 。
A.1,$\frac{π}{6}$B.1,$-\frac{π}{6}$C.2,$\frac{π}{3}$D.2,$-\frac{π}{3}$

查看答案和解析>>

同步練習冊答案