6.已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn≠0,且Sn=a1(an-1).
(I)求數(shù)列{an}的通項(xiàng)公式:
(II)若bn=an-log${\;}_{\frac{1}{2}}$an,Tn=b1+b2+…+bn,求Tn>2015成立的正整數(shù)n的最小值.

分析 (I)利用遞推關(guān)系與等比數(shù)列的通項(xiàng)公式即可得出;
(II)利用等比數(shù)列與等差數(shù)列的前n項(xiàng)和公式及其不等式的性質(zhì)即可得出.

解答 解:(I)∵Sn≠0,且Sn=a1(an-1).
∴當(dāng)n=1時(shí),a1=a1(a1-1),解得a1=2;
當(dāng)n≥2時(shí),an=Sn-Sn-1=2(an-1)-2(an-1-1),化為:an=2an-1
∴數(shù)列{an}是等比數(shù)列,首項(xiàng)為2,公比為2.
∴an=2n
(II)bn=an-log${\;}_{\frac{1}{2}}$an=2n+n.
∴Tn=b1+b2+…+bn=$\frac{2({2}^{n}-1)}{2-1}$+$\frac{n(n+1)}{2}$=2n+1-2+$\frac{n(n+1)}{2}$.
T9=1067,T10=2101.
∴使得Tn>2015成立的正整數(shù)n的最小值為10.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、遞推關(guān)系的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖,在平面直角坐標(biāo)系xOy中,以正方形ABCD的兩個(gè)頂點(diǎn)A,B為焦點(diǎn),且過(guò)點(diǎn)C,D的雙曲線的離心率是$\sqrt{2}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.用行列式解關(guān)于x,y的方程組:
$\left\{\begin{array}{l}{3mx-4y=m}\\{3x+(m-5)y=1}\end{array}\right.$(其中m∈R),并對(duì)解的情況進(jìn)行討論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若圓心在第四象限,半徑為$\sqrt{10}$的圓C與直線y=3x相切于坐標(biāo)原點(diǎn)O,則圓C的方程是(  )
A.(x-2)2+(y+1)2=10B.(x-3)2+(y+1)2=10C.(x-1)2+(y+3)2=10D.(x+1)2+(y-3)2=10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,AB⊥AC,AC⊥PB,點(diǎn)E為PD上一點(diǎn),AE=$\frac{1}{2}$PD,PB∥平面AEC,求證:PA⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知命題p:曲線C1:$\frac{{x}^{2}}{{k}^{2}}$+$\frac{{y}^{2}}{2k+8}$=1表示焦點(diǎn)在x軸上的橢圓,命題q:(k-1)x2+(k-5)y2=1表示雙曲線,若p或q為真,p且q為假,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知f(x)=$\frac{1}{x}$,則f(f′($\frac{1}{5}$))=( 。
A.-25B.-$\frac{1}{25}$C.$\frac{1}{25}$D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)函數(shù)f(x)=ax+(k+1)a-x(a>0且a≠1)是定義在R上的奇函數(shù).
(1)求k的值;
(2)若${\;}{f(1)=\frac{3}{2}}$,求函數(shù)y=g(x)=a2x+a-2x-4mf(x)(m∈R)在[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.向量$\overrightarrow{a}$=$({sinα,-\frac{3}{2}})$,$\overrightarrow$=$({cosα,\frac{1}{3}})$,$α∈({0,\frac{π}{2}})$,若$\overrightarrow{a}$⊥$\overrightarrow$,則角α=$\frac{π}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案