【題目】△ABC中,已知角A,B,C所對(duì)的邊分別為a,b,c, + = ,b=4,且a>c.
(1)求ac的值;
(2)若△ABC的面積為2 ,求a,c的值.
【答案】
(1)解: + = ,b=4,
可得acosC+ccosA= ,
由余弦定理可得a +c = ,
即有b= ,則ac=16
(2)解:△ABC的面積為2 ,
可得 acsinB=2 ,
即有sinB= ,
cosB=± =± ,
b2=a2+c2﹣2accosB,
即為16=a2+c2﹣24,或16=a2+c2+24(舍去),
又ac=16,(a>c>0),
解得a=4 ,c=2
【解析】(1)運(yùn)用余弦定理,化簡(jiǎn)整理,計(jì)算即可得到ac的值;(2)由三角形的面積公式可得sinB,求得cosB,再由余弦定理可得a,c關(guān)系式,解方程可得a,c的值.
【考點(diǎn)精析】本題主要考查了正弦定理的定義和余弦定理的定義的相關(guān)知識(shí)點(diǎn),需要掌握正弦定理:;余弦定理:;;才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3x.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)若關(guān)于x的方程f(x)=k有3個(gè)實(shí)根,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)定義域?yàn)?/span>若在上單調(diào)遞減,則稱為函數(shù)的峰點(diǎn), 為含峰函數(shù).(特別地,若在上單調(diào)遞增或遞減,則峰點(diǎn)為1或0).
對(duì)于不易直接求出峰點(diǎn)的含峰函數(shù),可通過做試驗(yàn)的方法給出的近似值,試驗(yàn)原理為:“對(duì)任意的若則為含峰區(qū)間,此時(shí)稱為近似峰點(diǎn);若則為含峰區(qū)間,此時(shí)稱為近似峰點(diǎn)”.
我們把近似峰點(diǎn)與之間可能出現(xiàn)的最大距離稱為試驗(yàn)的“預(yù)計(jì)誤差”,記為,其值為其中表示中較大的數(shù)
(Ⅰ)若求此試驗(yàn)的預(yù)計(jì)誤差;
(Ⅱ)如何選取才能使這個(gè)試驗(yàn)方案的預(yù)計(jì)誤差達(dá)到最小?并證明你的結(jié)論(只證明的取值即可).
(Ⅲ)選取可以確定含峰區(qū)間為或在所得的含峰區(qū)間內(nèi)選取,由與或與類似地可以進(jìn)一步得到一個(gè)新的預(yù)計(jì)誤差.分別求出當(dāng)和時(shí)預(yù)計(jì)誤差的最小值.(本問只寫結(jié)果,不必證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= (a<0)的定義域?yàn)镈,若所有點(diǎn)(s,f(t)(s,t∈D)構(gòu)成一個(gè)正方形區(qū)域,則a的值為( )
A.﹣2
B.﹣4
C.﹣8
D.不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ax2﹣bx(a,b∈R),g(x)= ﹣lnx.
(1)當(dāng)a=﹣1時(shí),f(x)與g(x)在定義域上的單調(diào)性相反,求b的取值范圍;
(2)當(dāng)a,b都為0時(shí),斜率為k的直線與曲線y=f(x)交A(x1 , y1),B(x2 , y2)(x1<x2)于兩點(diǎn),求證:x1< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓C1: =1(a>b>0),長(zhǎng)軸的右端點(diǎn)與拋物線C2:y2=8x的焦點(diǎn)F重合,且橢圓C1的離心率是 .
(1)求橢圓C1的標(biāo)準(zhǔn)方程;
(2)過F作直線l交拋物線C2于A,B兩點(diǎn),過F且與直線l垂直的直線交橢圓C1于另一點(diǎn)C,求△ABC面積的最小值,以及取到最小值時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:實(shí)數(shù)x滿足(x﹣a)(x﹣3a)<0,其中a>0,命題q:實(shí)數(shù)x滿足 2<x≤3.
(1)若a=1,有p且q為真,求實(shí)數(shù)x的取值范圍.
(2)若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“五點(diǎn)法”畫函數(shù)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如下表:
0 | |||||
0 | 2 | 0 | 0 |
(1)請(qǐng)將上表數(shù)據(jù)補(bǔ)充完整;函數(shù)的解析式為= (直接寫出結(jié)果即可);
(2)求函數(shù)的單調(diào)遞增區(qū)間;
(3)求函數(shù)在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 +y2=1(a>1),過直線l:x=2上一點(diǎn)P作橢圓的切線,切點(diǎn)為A,當(dāng)P點(diǎn)在x軸上時(shí),切線PA的斜率為± . (Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點(diǎn),求△POA面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com