【題目】在投擲骰子試驗(yàn)中,根據(jù)向上的點(diǎn)數(shù)可以定義許多事件,如:A={出現(xiàn)1點(diǎn)},B={出現(xiàn)3點(diǎn)或4點(diǎn)},C={出現(xiàn)的點(diǎn)數(shù)是奇數(shù)},D={出現(xiàn)的點(diǎn)數(shù)是偶數(shù)}.
(1)說(shuō)明以上4個(gè)事件的關(guān)系.
(2)求兩兩運(yùn)算的結(jié)果.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.
【解析】試題分析(1)已知事件的定義,首先由題意確定骰子向上可能出現(xiàn)的點(diǎn)數(shù)以及各個(gè)點(diǎn)數(shù)的出現(xiàn)能不能同時(shí)發(fā)生即可確定事件之間的關(guān)系;(2)根據(jù)互斥事件的加法概率公式對(duì)事件發(fā)生的概率進(jìn)行計(jì)算,進(jìn)而得出最終答案.
試題解析:在投擲骰子的試驗(yàn)中,根據(jù)向上出現(xiàn)的點(diǎn)數(shù)有6種基本事件,
記作Ai={出現(xiàn)的點(diǎn)數(shù)為i}(其中i=1,2,…,6).則A=A1,B=A3∪A4,
C=A1∪A3∪A5,D=A2∪A4∪A6.
(1)事件A與事件B互斥,但不對(duì)立,事件A包含于事件C,事件A與D互斥,但不對(duì)立;事件B與C不是互斥事件,事件B與D也不是互斥事件;事件C與D是互斥事件,也是對(duì)立事件.
(2)A∩B=,A∩C=A,A∩D=.
A∪B=A1∪A3∪A4={出現(xiàn)的點(diǎn)數(shù)為1或3或4},
A∪C=C={出現(xiàn)的點(diǎn)數(shù)為1或3或5},
A∪D=A1∪A2∪A4∪A6={出現(xiàn)的點(diǎn)數(shù)為1或2或4或6}.
B∩C=A3={出現(xiàn)的點(diǎn)數(shù)為3},
B∩D=A4={出現(xiàn)的點(diǎn)數(shù)為4}.
B∪C= A1∪A3∪A4∪A5={出現(xiàn)的點(diǎn)數(shù)為1或3或4或5}.
B∪D=A2∪A3∪A4∪A6={出現(xiàn)的點(diǎn)數(shù)為2或3或4或6}.
C∩D=,C∪D=A1∪A2∪A3∪A4∪A5∪A6={出現(xiàn)的點(diǎn)數(shù)為1,2,3,4,5,6}.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)前,網(wǎng)購(gòu)已成為現(xiàn)代大學(xué)生的時(shí)尚。某大學(xué)學(xué)生宿舍4人參加網(wǎng)購(gòu),約定:每個(gè)人通過(guò)擲一枚質(zhì)地均勻的骰子決定自己去哪家購(gòu)物,擲出點(diǎn)數(shù)為5或6的人去淘寶網(wǎng)購(gòu)物,擲出點(diǎn)數(shù)小于5的人去京東商城購(gòu)物,且參加者必須從淘寶網(wǎng)和京東商城選擇一家購(gòu)物.
(1)求這4個(gè)人中恰有1人去淘寶網(wǎng)購(gòu)物的概率;
(2)用分別表示這4個(gè)人中去淘寶網(wǎng)和京東商城購(gòu)物的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司試銷一種成本單價(jià)為500元的新產(chǎn)品,規(guī)定試銷時(shí)銷售單價(jià)不低于成本單價(jià),又不高于800元.經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似看作一次函數(shù)y=kx+b(k≠0),函數(shù)圖象如圖所示.
(1)根據(jù)圖象,求一次函數(shù)y=kx+b(k≠0)的表達(dá)式;
(2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷售總價(jià)-成本總價(jià))為S元.試問(wèn)銷售單價(jià)定為多少時(shí),該公司可獲得最大毛利潤(rùn)?最大毛利潤(rùn)是多少?此時(shí)的銷售量是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的奇函數(shù),且.若對(duì)任意的, 都有.
(1)用函數(shù)單調(diào)性的定義證明: 在定義域上為增函數(shù);
(2)若,求的取值范圍;
(3)若不等式對(duì)所有的 和都恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), .
(Ⅰ)判斷函數(shù)零點(diǎn)的個(gè)數(shù),并說(shuō)明理由;
(Ⅱ)記,討論的單調(diào)性;
(Ⅲ)若在恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)。
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.
(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;
(2)計(jì)算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面程序的功能是( )
A. 求1×2×3×4×…×10 00的值
B. 求2×4×6×8×…×10 000的值
C. 求3×5×7×9×…×10 001的值
D. 求滿足1×3×5×…×n>10 000的最小正整數(shù)n
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com