17.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{y≤2}\\{3x-y-3≤0}\\{2x+y-2≥0}\end{array}\right.$,目標(biāo)函數(shù)z=3x+y+a的最大值為4,則a=-3.

分析 由題意,不等式組$\left\{\begin{array}{l}{y≤2}\\{3x-y-3≤0}\\{2x+y-2≥0}\end{array}\right.$,表示一個三角形區(qū)域(包含邊界),求出三角形的三個頂點的坐標(biāo),目標(biāo)函數(shù)z=3x+y+a的幾何意義是直線的縱截距,由此可求得結(jié)論.

解答 解:由題意,不等式組$\left\{\begin{array}{l}{y≤2}\\{3x-y-3≤0}\\{2x+y-2≥0}\end{array}\right.$,表示一個三角形區(qū)域(包含邊界),三角形的三個頂點的坐標(biāo)分別為(0,2),(1,0),($\frac{5}{3}$,2)
目標(biāo)函數(shù)z=3x+y的幾何意義是直線的縱截距
由線性規(guī)劃知識可得,在點A($\frac{5}{3}$,2)處取得最大值4.
3×$\frac{5}{3}$+2+a=4,解得a=-3
故答案為:-3.

點評 本題考查線性規(guī)劃知識的運用,考查學(xué)生的計算能力,考查數(shù)形結(jié)合的數(shù)學(xué)思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,點M是BC的中點,△AMC的三邊長是連續(xù)的三個正整數(shù),且tan∠C=$\frac{1}{tan∠BAM}$.
(1)判斷△ABC的形狀;
(2)求∠BAC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知集合A={x|1<x≤5},集合B={x|$\frac{2x-5}{x-6}$≥0}.
(1)求A∩B;
(2)若集合C={x|a≤x≤4a-3},且C∪A=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.兩平行直線kx+6y+2=0與4x-3y+4=0之間的距離為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.定義在R上的奇函數(shù)f(x)滿足f(x-4)=-f(x),且在(0,2]上單調(diào)遞增,則( 。
A.f(-25)<f(19)<f(40)B.f (40)<f(19)<f(-25)C.f(19)<f(40)<f(-25)D.f(-25)<f(40)<f(19)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)為定義在R上的偶函數(shù),當(dāng)x≥0時,f(x)=2x-2,則不等式f(x-1)≤6的解集是[-2,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)集合A={x|$\frac{2x+1}{x-2}>1$},B={x|1<2x<8},則A∩B等于( 。
A.(2,3)B.(-3,3)C.(0,3)D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)A是由有限個正整數(shù)組成的集合,若存在兩個集合B,C滿足:①B∩C=∅;
②B∪C=A;③B的元素之和等于C的元素之和,則稱集合A“可均分”.
(1)證明:集合A={1,2,3,4,5,6,7,8}“可均分”;
(2)證明:集合A={2015+1,2015+2,…,2015+93}“可均分”;
(3)求出所有的正整數(shù)k,使得A={2015+1,2015+2,…,2015+k}“可均分”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知點$D(1,\sqrt{2})$在雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,b>0)$上,且雙曲線的一條漸近線的方程是$\sqrt{3}x+y=0$.(1)求雙曲線C的方程;
(2)過點(0,1)且斜率為k的直線l與雙曲線C交于A、B兩個不同點,若以線段AB為直徑的圓恰好經(jīng)過坐標(biāo)原點,求實數(shù)k的值.

查看答案和解析>>

同步練習(xí)冊答案