【題目】設(shè)函數(shù).

1)若存在最大值,且,求實(shí)數(shù)的取值范圍;

2)令,,求證:對(duì)任意的,總存在最小值,且.

【答案】1;(2)證明見(jiàn)解析

【解析】

1)先確定函數(shù)定義域,再求導(dǎo)可得,分情況進(jìn)行討論,根據(jù)函數(shù)的單調(diào)性,由存在最大值,且,解出實(shí)數(shù)的取值范圍;(2)將代入函數(shù),對(duì)函數(shù)進(jìn)行化簡(jiǎn)整理,可得,求導(dǎo),利用導(dǎo)數(shù)分析函數(shù)單調(diào)性,進(jìn)而得證.

1)由于的定義域?yàn)?/span>,

當(dāng)時(shí),上為單調(diào)函數(shù),此時(shí)無(wú)最大值;

當(dāng)時(shí),由,知上單調(diào)遞增,在上單調(diào)遞減,故的極大值點(diǎn).

,解得:.

綜上,當(dāng)時(shí),有最大值.

2)當(dāng)時(shí),.

,由于,則,

并且上單調(diào)遞增,故存在唯一的,使得,

從而,當(dāng)時(shí),,即上單調(diào)遞減;

當(dāng)時(shí),,即上單調(diào)遞增.

故函數(shù)存在最小值,結(jié)合,得

.

綜上得,對(duì)任意的總存在最小值,且.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線(xiàn)l的參數(shù)方程為(其中t為參數(shù),.在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸所建立的極坐標(biāo)系中,曲線(xiàn)C的極坐標(biāo)方程為.設(shè)直線(xiàn)l與曲線(xiàn)C相交于A,B兩點(diǎn).

1)求曲線(xiàn)C和直線(xiàn)l的直角坐標(biāo)方程;

2)已知點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】皮埃爾·德·費(fèi)馬,法國(guó)律師和業(yè)余數(shù)學(xué)家,被譽(yù)為“業(yè)余數(shù)學(xué)家之王”,對(duì)數(shù)學(xué)界做出了重大貢獻(xiàn),其中在1636年發(fā)現(xiàn)了:若是質(zhì)數(shù),且互質(zhì),那么次方除以的余數(shù)恒等于1,后來(lái)人們稱(chēng)該定理為費(fèi)馬小定理.依此定理若在數(shù)集中任取兩個(gè)數(shù),其中一個(gè)作為,另一個(gè)作為,則所取兩個(gè)數(shù)不符合費(fèi)馬小定理的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高一年級(jí)開(kāi)設(shè)了豐富多彩的校本課程,現(xiàn)從甲、乙兩個(gè)班隨機(jī)抽取了5名學(xué)生校本課程的學(xué)分,統(tǒng)計(jì)如下表.

8

11

14

15

22

6

7

10

23

24

分別表示甲、乙兩班抽取的5名學(xué)生學(xué)分的方差,計(jì)算兩個(gè)班學(xué)分的方差.得______,并由此可判斷成績(jī)更穩(wěn)定的班級(jí)是______班.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,過(guò)原點(diǎn)作射線(xiàn)交橢圓于,平行四邊形的頂點(diǎn),在橢圓上.

1)若射線(xiàn)的斜率為,求直線(xiàn)的斜率;

2)求證:四邊形的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司在2019年新研發(fā)了一種設(shè)備,為測(cè)試其性能,從設(shè)備生產(chǎn)的流水線(xiàn)上隨機(jī)抽取30件零件作為樣本,測(cè)量其重量后,得到下表的相關(guān)數(shù)據(jù).為了評(píng)判某臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其重量為,并根據(jù)以下不等式進(jìn)行評(píng)判(表示相應(yīng)事件的概率):①;②;評(píng)判規(guī)則為:若同時(shí)滿(mǎn)足上述兩個(gè)不等式,則設(shè)備等級(jí)為;僅滿(mǎn)足其中一個(gè),則等級(jí)為;若全部不滿(mǎn)足,則等級(jí)為.

經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.

重量/

18

19

21

22

23

24

26

28

29

30

件數(shù)/個(gè)

1

1

2

2

6

8

5

2

1

2

1)試判斷設(shè)備的性能等級(jí);

2)若的零件認(rèn)為是次品,其余為非次品.設(shè)30個(gè)樣本中次品個(gè)數(shù)為,現(xiàn)需要從中取出全部次品和2件非次品形成個(gè)小樣本,該公司從該小樣本中機(jī)抽取2件零件,求取出的兩件零件中恰有一件是次品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系.xOy中,曲線(xiàn)C1的參數(shù)方程為 為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為ρ=4sinθ.

1)求曲線(xiàn)C1的普通方程和C2的直角坐標(biāo)方程;

2)已知曲線(xiàn)C2的極坐標(biāo)方程為,點(diǎn)A是曲線(xiàn)C3C1的交點(diǎn),點(diǎn)B是曲線(xiàn)C3C2的交點(diǎn),且AB均異于原點(diǎn)O,且|AB|=4,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)記,試判斷函數(shù)的極值點(diǎn)的情況;

2)若有且僅有兩個(gè)整數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了提高學(xué)生的身體素質(zhì),某校高一、高二兩個(gè)年級(jí)共336名學(xué)生同時(shí)參與了我運(yùn)動(dòng),我健康,我快樂(lè)的跳繩、踢毽等系列體育健身活動(dòng).為了了解學(xué)生的運(yùn)動(dòng)狀況,采用分層抽樣的方法從高一、高二兩個(gè)年級(jí)的學(xué)生中分別抽取7名和5名學(xué)生進(jìn)行測(cè)試.下表是高二年級(jí)的5名學(xué)生的測(cè)試數(shù)據(jù)(單位:個(gè)/分鐘):

1)求高一、高二兩個(gè)年級(jí)各有多少人?

2)設(shè)某學(xué)生跳繩個(gè)/分鐘,踢毽個(gè)/分鐘.當(dāng),且時(shí),稱(chēng)該學(xué)生為運(yùn)動(dòng)達(dá)人”.

①?gòu)母叨昙?jí)的學(xué)生中任選一人,試估計(jì)該學(xué)生為運(yùn)動(dòng)達(dá)人的概率;

②從高二年級(jí)抽出的上述5名學(xué)生中,隨機(jī)抽取3人,求抽取的3名學(xué)生中為運(yùn)動(dòng)達(dá)人的人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案