14.若2<a<3,5<b<6,f(x)=logax+$\frac{3}{4}$x-b有正整數(shù)零點(diǎn)x0,則x0=5.

分析 由2<a<3,5<b<6可判斷f(4)f(6)<0,從而判斷零點(diǎn)的值.

解答 解:函數(shù)f(x)=logax+$\frac{3}{4}$x-b在定義域上連續(xù),
又∵2<a<3,5<b<6,
∴f(4)=loga4+3-b<0,
f(6)=loga6+4.5-b>0;
故f(4)f(6)<0;
故f(x)=logax+$\frac{3}{4}$有整數(shù)零點(diǎn)x0,則x0=5,
故答案為:5

點(diǎn)評(píng) 本題考查了函數(shù)的零點(diǎn)的判斷與應(yīng)用,函數(shù)與方程的綜合應(yīng)用,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{x}{{ln({ax})+2}}$(a≠0).
(1)若a=2,求曲線y=f(x)在點(diǎn)(${\frac{1}{2}$,f(${\frac{1}{2}}$))處的切線方程;
(2)當(dāng)x∈[2,4]時(shí),求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知等比數(shù)列的各項(xiàng)都為正數(shù),且當(dāng)n≥3時(shí),a4a2n-4=102n,則數(shù)列l(wèi)ga1,2lga2,22lga3,23lga4,…,2n-1lgan,…的前n項(xiàng)和Sn等于( 。
A.n•2nB.(n-1)•2n-1-1C.(n-1)•2n+1D.2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)矩陣A=$(\begin{array}{l}{0}&{1}&{0}\\{1}&{0}&{-1}\\{0}&{1}&{0}\end{array})$,若矩陣X滿足X-XA2-AX+AXA2=E,其中E為3階單位矩陣,求X.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知f(x)=a+lnx,記g(x)=f′(x).
(Ⅰ)已知函數(shù)h(x)=f(x)•g(x)在[1,+∞)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(Ⅱ)(。┣笞C:當(dāng)a=1時(shí),f(x)≤x;
(ⅱ)當(dāng)a=2時(shí),若不等式h(x)≥tg(x+1)(x∈[1,+∞))恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)$f(x)=ax-\frac{a}{x}+2lnx$(a∈R).
(Ⅰ)若函數(shù)f(x)為單調(diào)遞減函數(shù),求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)x1,x2∈(0,+∞)時(shí),不等式 $[\frac{{f({x_1})}}{x_2}-\frac{{f({x_2})}}{x_1}]({x_1}-{x_2})<0$恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖,圓O的直徑AB=4,直線CE和圓O相切于點(diǎn)C,AD⊥CE于D,若∠ABC=30°,則AD的長(zhǎng)為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=(x+1)e2x,g(x)=aln(x+1)+$\frac{3}{4}$x2+(3-a)x+a(a∈R).
(1)當(dāng)a=9,求函數(shù)y=g(x)的單調(diào)區(qū)間;
(2)若f(x)≥g(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.函數(shù)f($\sqrt{x+1}$)的定義域?yàn)閇0,3],則f(x)的定義域?yàn)閇1,2].

查看答案和解析>>

同步練習(xí)冊(cè)答案