6.如圖,圓O的直徑AB=4,直線CE和圓O相切于點C,AD⊥CE于D,若∠ABC=30°,則AD的長為1.

分析 利用圓的性質(zhì)、切線的性質(zhì)、三角形相似的判定與性質(zhì)、三角函數(shù)的定義即可得出.

解答 解:圓O的直徑AB=4,
若∠ABC=30°,則AC=2,
若直線CE和圓O相切于點C,AD⊥CE于D,
則∠ACD=30°,
∴AD=1,
故答案為:1.

點評 熟練掌握圓的性質(zhì)、切線的性質(zhì)、三角形相似的判定與性質(zhì)、三角函數(shù)的定義是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知點A(-2,4)、B(4,2),直線l過點P(0,-2)與線段AB相交,則直線l的斜率k的取值范圍是( 。
A.[1,+∞)B.(-∞,-3]C.[-3,1]D.(-∞,-3]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若函數(shù)f(x)=-x2-2(m-1)x+5在區(qū)間(-∞,-5]上單調(diào)遞增,則實數(shù)m的取值范圍是m≤6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若2<a<3,5<b<6,f(x)=logax+$\frac{3}{4}$x-b有正整數(shù)零點x0,則x0=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=xlnx-ax2+(2a-1)x.
(1)若a=$\frac{1}{2}$,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若x∈[1,+∞)時恒有f(x)≤a-1,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=(2x2-4ax)lnx,a∈R.
(1)當(dāng)a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若對任意x∈[1,+∞),f(x)+x2-a>0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{1}{6}$x3-ax(lnx-1)+$\frac{f′(1)}{2}x$(a∈R且a≠0).
(Ⅰ)設(shè)函數(shù)g(x)=$\frac{1}{6}$x3+$\frac{x}{2}$-f(x),求函數(shù)g(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a>0時,設(shè)函數(shù)h(x)=f′(x)-$\frac{1}{2}$;
①若h(x)≥0恒成立,求實數(shù)a的取值范圍;
②證明:ln(1•2•3…n)2e<12+22+32+…+n2(n∈N*,e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知p:-4<x-a<4,q:(x-2)(3-x)>0,若¬p是¬q的充分不必要條件,則實數(shù)a的取值范圍為[-1,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知集合A={x|x2-5x-6<0},集合B={x|6x2-5x+1≥0},集合C={x|(x-m)(x-m-9)<0}
(1)求A∩B;
(2)若A⊆C,求實數(shù) m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案