18.某校共有學(xué)生3000名,各年級(jí)男、女生人數(shù)如表所示,已知高一、高二年級(jí)共有男生1120人,現(xiàn)用分層抽樣的方法在全校抽取60名學(xué)生,則應(yīng)在高三年級(jí)抽取的學(xué)生人數(shù)為(  )
高一年級(jí)高二年級(jí)高三年級(jí)
女生456424y
男生644xz
A.16B.18C.20D.24

分析 先求出高三學(xué)生數(shù)是多少,再求用分層抽樣法在高三年級(jí)抽取的學(xué)生數(shù).

解答 解:根據(jù)題意得,
高一、高二學(xué)生總數(shù)是1120+(456+424)=2000,
∴高三學(xué)生總數(shù)是3000-2000=1000;
用分層抽樣法在高三年級(jí)抽取的學(xué)生數(shù)為$\frac{1000}{3000}×60$=20.
故選:C.

點(diǎn)評(píng) 本題考查了分層抽樣方法的應(yīng)用問(wèn)題,解題時(shí)應(yīng)了解分層抽樣方法的特點(diǎn),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知F1、F2分別是雙曲線$\frac{x^2}{8}-{y^2}$=1的左、右焦點(diǎn),P為雙曲線右支上的一點(diǎn),I是△PF1F2的內(nèi)心,且${S_{△IP{F_2}}}={S_{△IP{F_1}}}-m{S_{△I{F_1}{F_2}}}$,則m=(  )
A.$\frac{{2\sqrt{14}}}{7}$B.$\frac{{2\sqrt{2}}}{3}$C.$\frac{{3\sqrt{2}}}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$,以C的右焦點(diǎn)F為圓心,以a為半徑的圓與C的一條漸近線交于A,B兩點(diǎn),若△ABF為等邊三角形,則雙曲線C的離心率為(  )
A.$\frac{{\sqrt{7}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.命題“$?x>0,x+\frac{1}{x}≥2$”的否定是$?x>0,x+\frac{1}{x}<2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.一個(gè)盒中裝有編號(hào)分別為1,2,3,4的四個(gè)形狀大小完全相同的小球.
(1)從盒中任取兩球,求取出的球的編號(hào)之和大于5的概率.
(2)從盒中任取一球,記下該球的編號(hào)a,將球放回,再?gòu)暮兄腥稳∫磺,記下該球的編?hào)b,求|a-b|≥2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.拋物線y2=ax(a>0)與直線x=1圍成的封閉圖形的面積為$\frac{4}{3}$,則二項(xiàng)式(x+$\frac{a}{x}$)20展開式中含x-16項(xiàng)的系數(shù)是190.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知橢圓$\frac{x^2}{16}+\frac{y^2}{9}=1$的左、右焦點(diǎn)分別是F1,F(xiàn)2,過(guò)F2作傾斜角為23°的直線l交橢圓于A,B兩點(diǎn),則的△AF1B的周長(zhǎng)是( 。
A.20B.16C.8D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.在平面直角坐標(biāo)系中,A(1,-1),B(1,3),點(diǎn)C在直線x-y+1=0上.
(1)若直線AC的斜率是直線BC的斜率的2倍,求直線AC的方程;
(2)點(diǎn)B關(guān)于y軸對(duì)稱點(diǎn)為D,若以DC為直徑的圓M過(guò)點(diǎn)A,求C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上一點(diǎn)P到橢圓一個(gè)焦點(diǎn)的距離為4,則P到另一焦點(diǎn)距離為( 。
A.2B.4C.6D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案