12.已知a>0,b>0,且2a+b=ab,則a+2b的最小值為(  )
A.5+$2\sqrt{2}$B.$8\sqrt{2}$C.5D.9

分析 a>0,b>0,且2a+b=ab,可得a=$\frac{b-2}$>0,解得b>2.變形a+2b=$\frac{b-2}$+2b=1+$\frac{2}{b-2}$+2(b-2)+4,利用基本不等式的性質(zhì)即可得出.

解答 解:∵a>0,b>0,且2a+b=ab,
∴a=$\frac{b-2}$>0,解得b>2.
則a+2b=$\frac{b-2}$+2b=1+$\frac{2}{b-2}$+2(b-2)+4≥5+2×$2\sqrt{\frac{1}{b-2}•b-2}$=9,當(dāng)且僅當(dāng)b=3,a=3時取等號.
其最小值為9.
故選:D.

點評 本題考查了變形利用基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一個袋子中有號碼為1,2,3,4大小相同的4個小球,現(xiàn)從中任意取出一個球,取出后再放回,然后再從
袋中任取一個球,則取得兩個號碼之和為5的概率為(  )
A.$\frac{7}{8}$B.$\frac{3}{8}$C.$\frac{1}{4}$D.$\frac{3}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=(a-$\frac{1}{2}$)x2+lnx.(a∈R)
(1)當(dāng)a=0時,求f(x)在x=1處的切線方程;
(2)若在區(qū)間(1,+∞)上,函數(shù)f(x)的圖象恒在直線y=2ax下方,求a的取值范圍;
(3)設(shè)g(x)=f(x)-2ax,h(x)=x2-2bx+$\frac{19}{6}$.當(dāng)a=$\frac{2}{3}$時,若對于任意x1∈(0,2),存在x2∈[1,2],使g(x1)≤h(x2),求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=sinx+sin(x+\frac{π}{2}),x∈R$
(1)求f(x)的最小正周期;
(2)求f(x)的最大值及相應(yīng)x的取值集合;
(3)若f(α)=$\frac{3}{4}$,求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知x0是函數(shù)f(x)=ex-$\frac{1}{x}$的一個零點(其中e為自然對數(shù)的底數(shù)),若x1∈(0,x0),x2∈(x0,+∞),則( 。
A.f(x1)<0,f(x2)<0B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.給出下列四個命題:
①函數(shù)f(x)=lnx-2+x在區(qū)間(1,e)上存在零點;
②要得到函數(shù)y=sinx的圖象,只需將函數(shù)$y=cos(x-\frac{π}{3})$的圖象向左平移$\frac{π}{6}$個單位;
③若m≥-1,則函數(shù)$y={log_{\frac{1}{2}}}({x^2}-2x-m)$的值城為R;
④“a=1”是“函數(shù)f(x)=$\frac{{a-{e^x}}}{{1+a{e^x}}}$在定義域上是奇函數(shù)”的充分不必要條件;
⑤已知{an}為等差數(shù)列,若$\frac{{{a_{11}}}}{{{a_{10}}}}$<-1,且它的前n項和Sn有最大值,那么當(dāng)Sn取得最小正值時,n=20.
其中正確命題的序號是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.從某高校男生中隨機抽取100名學(xué)生,測得他們的身高(單位:cm)情況如下表:
分組頻數(shù)頻率
[160,165)100.10
[165,170)300.30
[170,175)a0.35
[175,180)bc
[180,185]100.10
合計1001.00
(Ⅰ)求a,b,c的值;
(Ⅱ)按表中的身高組別進(jìn)行分層抽樣,從這100名學(xué)生中抽取20名擔(dān)任某國際馬拉松志愿者,再從身高不低于175cm的志愿者中隨機選出兩名擔(dān)任迎賓工作,求這兩名擔(dān)任迎賓工作的志愿者中至少有一名的身高不低于180cm的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)直線x-3y+m=0(m≠0)與雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)兩條漸近線分別交于點A、B,若點P(m,0)滿足($\overrightarrow{PA}$+$\overrightarrow{PB}$)⊥$\overrightarrow{AB}$,則該雙曲線的離心率是( 。
A.$\frac{\sqrt{5}}{4}$B.$\frac{\sqrt{5}}{2}$C.$\frac{5}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知定義在R上的增函數(shù)f(x)滿足f(x)>0,且對于任意的m,n∈R都有f(m)•f(n)=f(m+n).
(1)求f(0)的值;
(2)求證$\frac{f(m)}{f(n)}$=f(m-n)(m,n∈R);
(3)若f(4)=4,且存在x∈[1,t](t>1)使得f(x2)≤$\frac{1}{8}$f(kx),求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案