7.已知x0是函數(shù)f(x)=ex-$\frac{1}{x}$的一個(gè)零點(diǎn)(其中e為自然對(duì)數(shù)的底數(shù)),若x1∈(0,x0),x2∈(x0,+∞),則( 。
A.f(x1)<0,f(x2)<0B.f(x1)<0,f(x2)>0C.f(x1)>0,f(x2)<0D.f(x1)>0,f(x2)>0

分析 判斷函數(shù)f(x)的單調(diào)性,結(jié)合函數(shù)零點(diǎn)的定義,結(jié)合函數(shù)單調(diào)性的性質(zhì)進(jìn)行判斷即可.

解答 解:函數(shù)f(x)在(0,+∞)上為增函數(shù),
∵x0是函數(shù)f(x)=ex-$\frac{1}{x}$的一個(gè)零點(diǎn),
∴f(x0)=e${\;}^{{x}_{0}}$-$\frac{1}{{x}_{0}}$=0,
則當(dāng)x1∈(0,x0)時(shí),f(x1)<f(x0)=0,
當(dāng)x2∈(x0,+∞)時(shí),f(x2)>f(x0)=0,
故選:B.

點(diǎn)評(píng) 本題主要考查函數(shù)單調(diào)性和函數(shù)零點(diǎn)的應(yīng)用,利用函數(shù)的單調(diào)性是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)全集U={1,2,3,4,5,6},A={2,4,6}則CUA=(  )
A.{1,3,5,6}B.{1,3,5}C.{2,3,4}D.{1,2,3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)$f(x)=\left\{\begin{array}{l}{(\frac{1}{2})^x},x≥3\\ f(x+1),x<3\end{array}\right.$,則$f(1-{log_{\frac{1}{2}}}3)$=$\frac{1}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.曲線y=xlnx在點(diǎn)(1,0)處的切線方程是( 。
A.y=x-1B.y=x+1C.y=2x-2D.y=2x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在等比數(shù)列{an}中,a1=3,a3=12,則a5=(  )
A.48B.-48C.±48D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知a>0,b>0,且2a+b=ab,則a+2b的最小值為( 。
A.5+$2\sqrt{2}$B.$8\sqrt{2}$C.5D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若a=20.1,b=0.12,c=log20.1,則( 。
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.?dāng)?shù)列{an},{bn}中,a1=-4,b1=1,an+1=2an+bn(n∈N*),且數(shù)列$\left\{{\frac{a_n}{2^n}}\right\}$是等差數(shù)列.
(1)求{bn}的前n項(xiàng)Tn
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求使Sn最小的n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2(sinx+m)2-3.
(1)若m=$\frac{1}{2}$,求f(x)的最小值;
(2)若m=2,求f(x)的最小值;
(3)若m∈R,求f(x)的最小值[用m表示,記為g(m)];
(4)若f(x)的最小值為-2,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案