【題目】1970424日,我國發(fā)射了自己的第一顆人造地球衛(wèi)星“東方紅一號”,從此我國開始了人造衛(wèi)星的新篇章.人造地球衛(wèi)星繞地球運行遵循開普勒行星運動定律:衛(wèi)星在以地球為焦點的橢圓軌道上繞地球運行時,其運行速度是變化的,速度的變化服從面積守恒規(guī)律,即衛(wèi)星的向徑(衛(wèi)星與地球的連線)在相同的時間內(nèi)掃過的面積相等.設(shè)橢圓的長軸長、焦距分別為,,下列結(jié)論正確的是(

A.衛(wèi)星向徑的取值范圍是

B.衛(wèi)星在左半橢圓弧的運行時間大于其在右半橢圓弧的運行時間

C.衛(wèi)星向徑的最小值與最大值的比值越大,橢圓軌道越扁

D.衛(wèi)星運行速度在近地點時最大,在遠地點時最小

【答案】ABD

【解析】

根據(jù)橢圓的定義和性質(zhì)和面積守恒規(guī)律,依次判斷每個選項得到答案.

根據(jù)橢圓定義知衛(wèi)星向徑的取值范圍是,正確;

當(dāng)衛(wèi)星在左半橢圓弧的運行時,對應(yīng)的面積更大,面積守恒規(guī)律,速度更慢,正確;

,當(dāng)比值越大,則越小,橢圓軌道越圓,錯誤.

根據(jù)面積守恒規(guī)律,衛(wèi)星在近地點時向徑最小,故速度最大,在遠地點時向徑最大,故速度最小,正確.

故選:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】恩格爾系數(shù)是食品支出總額占個人消費支出總額的比重,其數(shù)值越小說明生活富裕程度越高.統(tǒng)計改革開放40年來我國歷年城鎮(zhèn)和農(nóng)村居民家庭恩格爾系數(shù),繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論錯誤的是(

A.城鎮(zhèn)居民家庭生活富裕程度不低于農(nóng)村居民家庭

B.隨著改革開放的不斷深入,城鎮(zhèn)和農(nóng)村居民家庭生活富裕程度越來越高

C.1996年開始城鎮(zhèn)和農(nóng)村居民家庭恩格爾系數(shù)都低于50%

D.隨著城鄉(xiāng)一體化進程的推進,城鎮(zhèn)和農(nóng)村居民家庭生活富裕程度差別越來越小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2020年是中國傳統(tǒng)的農(nóng)歷“鼠年”,有人用3個圓構(gòu)成“卡通鼠”的形象,如圖:是圓的圓心,圓過坐標(biāo)原點;點、均在軸上,圓與圓的半徑都等于2,圓均與圓外切.已知直線過點

1)若直線與圓、圓均相切,則截圓所得弦長為__________

2)若直線截圓、圓、圓所得弦長均等于,則__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】6名黨員干部分配到4個貧困村駐村扶貧,每個貧困村至少分配1名黨員干部,則不同的分配方案共有(

A.2640B.4800C.1560D.7200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有一個“引葭赴岸”問題:“今有池方一丈,葭生其中央.出水一尺,引葭赴岸,適與岸齊.問水深、葭長各幾何?”其意思為“今有水池1丈見方(即尺),蘆葦生長在水的中央,長出水面的部分為1.將蘆葦向池岸牽引,恰巧與水岸齊接(如圖所示).試問水深、蘆葦?shù)拈L度各是多少?假設(shè),現(xiàn)有下述四個結(jié)論:

①水深為12尺;②蘆葦長為15尺;③;④.

其中所有正確結(jié)論的編號是(

A.①③B.①③④C.①④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. 命題“若,則”的否命題是“若,則

B. 命題“,”的否定是“

C. 處有極值”是“”的充要條件

D. 命題“若函數(shù)有零點,則“”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓、拋物線的焦點均在軸上,的中心和的頂點均為原點,從每條曲線上取兩個點,將其坐標(biāo)記錄于下表中:


3

2

4




0

4


)求的標(biāo)準(zhǔn)方程;

)請問是否存在直線滿足條件:的焦點;交不同兩點且滿足?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知件次品和件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出件次品或者檢測出件正品時檢測結(jié)束.

1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;

2)已知每檢測一件產(chǎn)品需要費用元,設(shè)表示直到檢測出件次品或者檢測出件正品時所需要的檢測費用(單位:元),求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,的頂點,且、成等差數(shù)列.

1)求的頂點的軌跡方程;

2)直線與頂點的軌跡交于兩點,當(dāng)線段的中點落在直線上時,試問:線段的垂直平分線是否恒過定點?若過定點,求出定點的坐標(biāo);若不過定點,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案