【題目】己知函數(shù), .
(I)求函數(shù)的單調(diào)區(qū)間;
(II)設(shè),已知函數(shù)在上是增函數(shù).
(1)研究函數(shù)上零點(diǎn)的個(gè)數(shù);
(ii)求實(shí)數(shù)c的取值范圍.
【答案】(Ⅰ)詳見(jiàn)解析; (Ⅱ)(1)1個(gè);(2) .
【解析】試題分析(1) 對(duì)函數(shù)求導(dǎo),①當(dāng)時(shí), 在上是減函數(shù),在上是增函數(shù);②當(dāng)時(shí), 在上是增函數(shù),在上是減函數(shù);(2) (1)當(dāng)時(shí),函數(shù) , , 在上單調(diào)遞減.又, ,由函數(shù)的零點(diǎn)存在性定理及其單調(diào)性知, 在上零點(diǎn)的個(gè)數(shù)為1.(2)由(1)知,當(dāng)時(shí), >0,當(dāng)時(shí), <0.∴當(dāng)時(shí), =求導(dǎo),得在, 上恒成立. ①當(dāng)時(shí), min= 極小值= ,故“在上恒成立”,只需 .②當(dāng)時(shí),當(dāng)時(shí), 在上恒成立,綜合①②知, 的取值范圍是.
試題解析:(Ⅰ)∵,
∴,
①當(dāng)時(shí),
在時(shí), ,
在時(shí), ,
故在上是減函數(shù),在上是增函數(shù);
②當(dāng)時(shí),
在時(shí), ,
在時(shí), ,
故在上是增函數(shù),在上是減函數(shù);
(Ⅱ)(1)當(dāng)時(shí),函數(shù) ,
求導(dǎo),得,
當(dāng)時(shí), 恒成立,
當(dāng)時(shí), ,
∴ ,
∴在上恒成立,故在上單調(diào)遞減.
又, ,
曲線在[1,2]上連續(xù)不間斷,
∴由函數(shù)的零點(diǎn)存在性定理及其單調(diào)性知,唯一的∈(1,2),使,
所以,函數(shù)在上零點(diǎn)的個(gè)數(shù)為1.
(2)由(1)知,當(dāng)時(shí), >0,當(dāng)時(shí), <0.
∴當(dāng)時(shí), =
求導(dǎo),得
由函數(shù)在上是增函數(shù),且曲線在上連續(xù)不斷知:
在, 上恒成立.
①當(dāng)時(shí), 上恒成立,
即在上恒成立,
記, ,則, ,
當(dāng) 變化時(shí), , 變化情況列表如下:
3 | |||
0 | |||
極小值 |
∴min= 極小值= ,
故“在上恒成立”,只需 ,即.
②當(dāng)時(shí), ,
當(dāng)時(shí), 在上恒成立,
綜合①②知,當(dāng)時(shí),函數(shù)在上是增函數(shù).
故實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)科研人員屠呦呦法相從青篙中提取物青篙素抗瘧性超強(qiáng),幾乎達(dá)到100%,據(jù)監(jiān)測(cè):服藥后每毫升血液中的含藥量y(微克)與時(shí)間r(小時(shí))之間近似滿(mǎn)足如圖所示的曲線
(1)寫(xiě)出第一服藥后y與t之間的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)據(jù)進(jìn)一步測(cè)定:每毫升血液中含藥量不少于 微克時(shí),治療有效,求服藥一次后治療有效的時(shí)間是多長(zhǎng)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題p:x∈[1,2],x2≥a;命題q:x∈R,x2+2ax+2﹣a=0,若命題p∧q是真命題,則實(shí)數(shù)a的取值范圍是( )
A.a≤﹣2或a=1
B.a≤﹣2或1≤a≤2
C.a≥1
D.﹣2≤a≤1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),他們?cè)谂嘤?xùn)期間8次模擬考試的成績(jī)?nèi)缦拢?甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)畫(huà)出甲、乙兩位學(xué)生成績(jī)的莖葉圖,并求學(xué)生乙成績(jī)的平均數(shù)和方差;
(2)從甲同學(xué)超過(guò)80分的6個(gè)成績(jī)中任取兩個(gè),求這兩個(gè)成績(jī)中至少有一個(gè)超過(guò)90分的概率.
(3)甲同學(xué)超過(guò)80(分)的成績(jī)有82 81 95 88 93 84,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓的一個(gè)焦點(diǎn)為, 是橢圓上的一個(gè)點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的上、下頂點(diǎn)分別為, ()是橢圓上異于的任意一點(diǎn), 軸, 為垂足, 為線段中點(diǎn),直線交直線于點(diǎn), 為線段的中點(diǎn),如果的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn , 等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,公比為q(q≠0),且b2+S2=12, .
(1)求{an}與{bn}的通項(xiàng)公式;
(2)證明: + +…+ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 某中學(xué)的環(huán)保社團(tuán)參照國(guó)家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級(jí)對(duì)應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會(huì)超過(guò)300):
空氣質(zhì)量指數(shù) | ||||||
空氣質(zhì)量等級(jí) | 級(jí)優(yōu) | 級(jí)良 | 級(jí)輕度 污染 | 級(jí)中度 污染 | 級(jí)重度 污染 | 級(jí)嚴(yán)重污染 |
該社團(tuán)將該校區(qū)在2016年100天的空氣質(zhì)量指數(shù)監(jiān)測(cè)數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計(jì)為概率.
(Ⅰ)請(qǐng)估算2017年(以365天計(jì)算)全年空氣質(zhì)量?jī)?yōu)良的天數(shù)(未滿(mǎn)一天按一天計(jì)算);
(Ⅱ)用分層抽樣的方法共抽取10天,則空氣質(zhì)量指數(shù)在(0,50],(50,100],(100,150]的天數(shù)中各應(yīng)抽取幾天?
(Ⅲ)已知空氣質(zhì)量等級(jí)為1級(jí)時(shí)不需要凈化空氣,空氣質(zhì)量等級(jí)為2級(jí)時(shí)每天需凈化空氣的費(fèi)用為2000元,空氣質(zhì)量等級(jí)為3級(jí)時(shí)每天需凈化空氣的費(fèi)用為4000元.若在(Ⅱ)的條件下,從空氣質(zhì)量指數(shù)在的天數(shù)中任意抽取兩天,求這兩天的凈化空氣總費(fèi)用為4000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱錐P﹣ABCD中,各側(cè)面是全等的等腰三角形,腰長(zhǎng)為4且頂角為30°,底面是正方形(如圖),在棱PB,PC上各有一點(diǎn)M,N,且四邊形AMND的周長(zhǎng)最小,點(diǎn)S從A出發(fā)依次沿四邊形AM,MN,ND運(yùn)動(dòng)至點(diǎn)D,記點(diǎn)S行進(jìn)的路程為x,棱錐S﹣ABCD的體積為V(x),則函數(shù)V(x)的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com