【題目】已知f(x)=a (a>0且a≠1),若f(lga)= ,則a= .
【答案】10或
【解析】解:因?yàn)楹瘮?shù)f(x)= (a>0且a≠1),
所以f(lga)= = ,
兩邊取以10為底的對(duì)數(shù),得:(lga﹣ )lga= ,
解得:lga=1或lga=﹣ ,
∴a=10或a=
所以答案是:10或 .
【考點(diǎn)精析】本題主要考查了函數(shù)的零點(diǎn)與方程根的關(guān)系的相關(guān)知識(shí)點(diǎn),需要掌握二次函數(shù)的零點(diǎn):(1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn);(2)△=0,方程 有兩相等實(shí)根(二重根),二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn);(3)△<0,方程 無(wú)實(shí)根,二次函數(shù)的圖象與 軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次測(cè)驗(yàn)共有4個(gè)選擇題和2個(gè)填空題,每答對(duì)一個(gè)選擇題得20分,每答對(duì)一個(gè)填空題得10分,答錯(cuò)或不答得0分,若某同學(xué)答對(duì)每個(gè)選擇題的概率均為 ,答對(duì)每個(gè)填空題的概率均為 ,且每個(gè)題答對(duì)與否互不影響.
(1)求該同學(xué)得80分的概率;
(2)若該同學(xué)已經(jīng)答對(duì)了3個(gè)選擇題和1個(gè)填空題,記他這次測(cè)驗(yàn)的得分為ξ,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 過(guò)點(diǎn), 為橢圓的半焦距,且,過(guò)點(diǎn)作兩條互相垂直的直線, 與橢圓分別交于另兩點(diǎn), .
(1)求橢圓的方程;
(2)若直線的斜率為,求的面積;
(3)若線段的中點(diǎn)在軸上,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱與四邊形BDEF相交于BD, 平面ABCD,DE//BF,BF=2DE,AF⊥FC,M為CF的中點(diǎn), .
(I)求證:GM//平面CDE;
(II)求證:平面ACE⊥平面ACF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù) (其中e為自然對(duì)數(shù)的底數(shù)), .
(I)求函數(shù)的單調(diào)區(qū)間;
(II)設(shè),.已知直線是曲線的切線,且函數(shù)上是增函數(shù).
(i)求實(shí)數(shù)的值;
(ii)求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知函數(shù), .
(I)求函數(shù)的單調(diào)區(qū)間;
(II)設(shè),已知函數(shù)在上是增函數(shù).
(1)研究函數(shù)上零點(diǎn)的個(gè)數(shù);
(ii)求實(shí)數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0,其中a>0,命題q:實(shí)數(shù)x滿足 .
(1)若a=1,且p∨q為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以O為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求圓的普通方程;
(Ⅱ)直線的極坐標(biāo)方程是,射線與圓C的交點(diǎn)為,與直線的交點(diǎn)為,求線段的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn , 且a1+a3=10,S4=24.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令Tn= ,求證:Tn< .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com