在邊長為1的正三角形ABC中,,x>0,y>0,且x+y=1,則的最大值為( )
A.
B.
C.
D.
【答案】分析:根據(jù),可得==-1+,利用x>0,y>0,且x+y=1,可求的最大值.
解答:解:由題意,

==-1+
∵x>0,y>0,且x+y=1
∴xy≤
∴-1+=-1+
當且僅當x=y=時,取等號
∴當x=y=時,的最大值為
故選B
點評:本題考查向量知識的運用,考查向量的加法,考查向量的數(shù)量積,考查基本不等式的運用,綜合性強.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在邊長為1的正三角形ABC中,設(shè)
BC
=
a
,
AB
=
c
,
AC
=
b
,則
a
b
+
b
c
+
c
a
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在邊長為1的正三角形ABC中,
BC
=
a
,
AB
=
c
,
CA
=
b
,則
a
b
+
b
c
+
c
a
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在邊長為1的正三角形ABC中,
BD
=
1
3
BA
,E是CA的中點,則
CD
BE
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在邊長為1的正三角形ABC中,
BD
=x
BA
,
CE
=y
CA
,x>0,y>0,且x+y=1,則
CD
BE
的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣元二模)在邊長為1的正三角形ABC中,
AB
BC
+
BC
CA
+
CA
AB
=
-
3
2
-
3
2

查看答案和解析>>

同步練習(xí)冊答案