首屆世界低碳經(jīng)濟大會在南昌召開,本屆大會以“節(jié)能減排,綠色生態(tài)”為主題.某單位在國家科研部門的支持下,進行技術(shù)攻關(guān),采用了新工藝,把二氧化碳轉(zhuǎn)化為一種可利用的化工產(chǎn)品.已知該單位每月的處理量最少為400噸,最多為600噸,月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為y=x2-200x+80 000,且每處理一噸二氧化碳得到可利用的化工產(chǎn)品價值為100元.
(1)該單位每月處理量為多少噸時,才能使每噸的平均處理成本最低?
(2)該單位每月能否獲利?如果獲利,求出最大利潤;如果不獲利,則國家至少需要補貼多少元才能使該單位不虧損?

(1) 400噸 最低成本為200  (2) 該單位每月不獲利,需要國家每月至少補貼40 000元才能不虧損

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

對于函數(shù),若在定義域存在實數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知二次函數(shù),試判斷是否為“局部奇函數(shù)”?并說明理由;
(2)設(shè)是定義在上的“局部奇函數(shù)”,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知關(guān)于x的二次方程x2+2mx+2m+1=0.
(1)若方程有兩根,其中一根在區(qū)間(-1,0)內(nèi),另一根在區(qū)間(1,2)內(nèi),求實數(shù)m的取值范圍;
(2)若方程兩根均在區(qū)間(0,1)內(nèi),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求下列各式的值.
(1)log535+2-log5-log514;
(2)log2×log3×log5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x2-4,設(shè)曲線yf(x)在點(xn,f(xn))
處的切線與x軸的交點為(xn+1,0)(n∈N),其中x1為正實數(shù).
(1)用xn表示xn+1
(2)求證:對一切正整數(shù)n,xn+1xn的充要條件是x1≥2;
(3)若x1=4,記an=lg ,證明數(shù)列{an}成等比數(shù)列,并求數(shù)列{xn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義在R上的函數(shù)及二次函數(shù)滿足:
(1)求的解析式;
(2);
(3)設(shè),討論方程的解的個數(shù)情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=a-是偶函數(shù),a為實常數(shù).
(1)求b的值.
(2)當(dāng)a=1時,是否存在n>m>0,使得函數(shù)y=f(x)在區(qū)間[m,n]上的函數(shù)值組成的集合也是[m,n],若存在,求出m,n的值,否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某養(yǎng)殖廠需定期購買飼料,已知該廠每天需要飼料200千克,每千克飼料的價格為1.8元,飼料的保管費與其他費用平均每千克每天0.03元,購買飼料每次支付運費300元.
(1)求該廠多少天購買一次飼料才能使平均每天支付的總費用最少;
(2)若提供飼料的公司規(guī)定,當(dāng)一次購買飼料不少于5噸時,其價格可享受八五折優(yōu)惠(即原價的85%).問:該廠是否應(yīng)考慮利用此優(yōu)惠條件?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知兩條直線l1:y=m和l2:y=,l1與函數(shù)y=|log2x|的圖象從左至右相交于點A、B,l2與函數(shù)y=|log2x|的圖象從左至右相交于點C、D.記線段AC和BD在x軸上的投影長度分別為a、b.當(dāng)m變化時,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案