分析 (1)數(shù)列{an}滿足an=3an-1+2(n≥2,n∈N+),變形為an+1=3(an-1+1),即可證明;
(2)由(1)可得:an=3n-1.由bn=log3(an+1),可得bn=$lo{g}_{3}({3}^{n}+1-1)$=n.a(chǎn)nbn=n•(3n-1)=n•3n-n.利用“錯(cuò)位相減法”、等差數(shù)列與等比數(shù)列的前n項(xiàng)和公式即可得出.
解答 (1)證明:∵數(shù)列{an}滿足an=3an-1+2(n≥2,n∈N+),
∴an+1=3(an-1+1),
∴數(shù)列{an+1}為等比數(shù)列,首項(xiàng)為3,公比為3;
(2)解:由(1)可得:an=3n-1.
∵bn=log3(an+1),∴bn=$lo{g}_{3}({3}^{n}+1-1)$=n.
∴anbn=n•(3n-1)=n•3n-n.
令Tn=3+2×32+3×33+…+n•3n,
∴3Tn=32+2×33+…+(n-1)•3n+n•3n+1,
∴-2Tn=3+32+…+3n-n•3n+1=$\frac{3({3}^{n}-1)}{3-1}$-n•3n+1=$\frac{1-2n}{2}$•3n+1-$\frac{3}{2}$,
∴Tn=$\frac{2n-1}{4}•{3}^{n+1}$+$\frac{3}{4}$.
∴數(shù)列{anbn}的前n項(xiàng)和Sn=$\frac{2n-1}{4}•{3}^{n+1}$+$\frac{3}{4}$-$\frac{n(n+1)}{2}$.
點(diǎn)評(píng) 本題考查了遞推式的應(yīng)用、等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式、“錯(cuò)位相減法”,考查了變形能力、推理能力與計(jì)算能力,屬于中檔題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2=8y | B. | x2=2y | C. | x2=4y | D. | x2=2$\sqrt{2}$y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1<m≤2 | B. | 1<m<2 | C. | m>2 | D. | m≥2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | $\frac{4\sqrt{3}}{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,+∞) | B. | (-∞,1) | C. | [1,+∞) | D. | (1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 重心 | B. | 外心 | C. | 內(nèi)心 | D. | 垂心 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com