【題目】已知全集U為R,集合A={x|x2<4},B= (x﹣2)},則下列關(guān)系正確的是( )
A.A∪B=R
B.A∪(∪B)=R
C.(∪A)∪B=R
D.A∩(∪B)=A
【答案】D
【解析】解:全集U為R,集合A={x|x2<4}={x|﹣2<x<2},
B= (x﹣2)}={x|x﹣2>0}={x|x>2},
A∪B={x|x>﹣2且x≠2},A錯誤;
UB={x|x≤2},A∪(UB)={x|x≤2},B錯誤;
UA={x|x≤﹣2或x≥2},∴(UA)∪B={x|x≤﹣2或x≥2},C錯誤;
A∩(UB)={x|﹣2<x<2}=A,D正確.
故選:D.
【考點精析】通過靈活運用交、并、補集的混合運算,掌握求集合的并、交、補是集合間的基本運算,運算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結(jié)合的思想方法即可以解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某市舉辦青少年運動會上,7位裁判為某武術(shù)隊員打出的分?jǐn)?shù)的莖葉圖,左邊數(shù)字表示十位數(shù)字,右邊數(shù)字表示個位數(shù)字,這些數(shù)據(jù)的中位數(shù)是( ),去掉一個最低分和最高分所剩數(shù)據(jù)的平均數(shù)是( )
A.86.5,86.7
B.88,86.7
C.88,86.8
D.86,5,86.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)無窮等差數(shù)列{an}的前n項和為Sn , 已知a1=1,S3=12.
(1)求a24與S7的值;
(2)已知m、n均為正整數(shù),滿足am=Sn . 試求所有n的值構(gòu)成的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足(2b﹣c)cosA﹣acosC=0.
(1)求角A的大。
(2)若a=4,求△ABC周長的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù)3,4,5,a,b的平均數(shù)是4,中位數(shù)是m,從3,4,5,a,b,m這組數(shù)據(jù)中任取一數(shù),取到數(shù)字4的概率為 ,那么3,4,5,a,b這組數(shù)據(jù)的方差為( )
A.
B.2
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x|x﹣a|+2x(a∈R)
(1)當(dāng)a=4時,解不等式f(x)≥8;
(2)當(dāng)a∈[0,4]時,求f(x)在區(qū)間[3,4]上的最小值;
(3)若存在a∈[0,4],使得關(guān)于x的方程f(x)=tf(a)有3個不相等的實數(shù)根,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圓x2+y2=8內(nèi)有一點P0(﹣1,2),AB為過點P0且傾斜角為α的弦;
(1)當(dāng) 時,求AB的長;
(2)當(dāng)弦AB被點P0平分時,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,已知CA=1,CB=2,∠ACB=60°.
(1)求| |;
(2)已知點D是AB上一點,滿足 =λ ,點E是邊CB上一點,滿足 =λ . ①當(dāng)λ= 時,求 ;
②是否存在非零實數(shù)λ,使得 ⊥ ?若存在,求出的λ值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com