已知一次函數(shù)f(x),滿足f(1)=0,f(3)=-2,
(1)求函數(shù)解析式,作出函數(shù)f(x)的圖象;
(2)求函數(shù)f(x)在x∈[-1,2)的值域.
考點(diǎn):函數(shù)解析式的求解及常用方法,函數(shù)的值域
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)設(shè)出函數(shù)的表達(dá)式,得方程組,解出a,b的值即可;(2)根據(jù)函數(shù)的單調(diào)性求出函數(shù)的值域.
解答: 解:(1)設(shè)f(x)=ax+b,
由f(1)=0,f(3)=-2,
得:
a+b=0
3a+b=-2
,解得:
a=-1
b=1
,
∴f(x)=-x+1,
如圖示:
;
(2)由(1)得:f(x)在[-1,2)遞減,
∴f(x)max=f(-1)=2,f(x)min=f(2)=-1,
∴函數(shù)f(x)在x∈[-1,2)的值域是(-1,2].
點(diǎn)評(píng):本題考查了求函數(shù)的解析式問(wèn)題,考查了函數(shù)的圖象,值域問(wèn)題,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知2x+2-6•2x-1>1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x2+2mx+1,若?x0∈R,使得?x1∈[1,2]都有f(x1)<f(x0),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=
2
+
sinx
π
,x∈R的最大值、最小值,并求使函數(shù)取得最大值、最小值的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x3
3
+
mx2+(m+n)x+1
2
的兩個(gè)極值點(diǎn)分別為x1,x2,且x1∈(0,1),x2∈(1,+∞),點(diǎn)P(m,n)表示的平面區(qū)域?yàn)镈,若函數(shù)y=loga(x+4)(a>1)的圖象上存在區(qū)域D內(nèi)的點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A、(1,3]
B、(1,3)
C、(3,+∞)
D、[3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)a>0時(shí),函數(shù)f(x)=(x2-ax)ex的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)y=f(x)在R單調(diào)遞減,且f(2a+2)>f(a2-1),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=4lnx-x2的大致圖象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某中學(xué)高二年級(jí)的甲、乙兩個(gè)班中,需根據(jù)某次數(shù)學(xué)預(yù)賽成績(jī)選出某班的5名學(xué)生參加數(shù)學(xué)競(jìng)賽決賽,已知這次預(yù)賽他們?nèi)〉玫某煽?jī)(滿分100分)的莖葉圖如圖所示,其中甲班5名學(xué)生成績(jī)的平均分是83,乙班5名學(xué)生成績(jī)的中位數(shù)是86.
(Ⅰ)求出x,y的值,且分別求甲、乙兩個(gè)班中5名學(xué)生成績(jī)的方差S12、S22,并根據(jù)結(jié)果,你認(rèn)為應(yīng)該選派哪一個(gè)班的學(xué)生參加決賽?
(Ⅱ)從成績(jī)?cè)?5分及以上的學(xué)生中隨機(jī)抽取2名.求至少有1名來(lái)自甲班的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案