已知函數(shù)f(x)是定義在R上的奇函數(shù),其最小正周期為3,且x∈(-
3
2
,0),f(x)=log2(-3x+1),則f(2014)=
 
考點:函數(shù)奇偶性的性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:運用函數(shù)的周期性可得f(2014)=f(1),再由奇函數(shù)的定義,可得f(1)=-f(-1),結(jié)合已知區(qū)間的函數(shù)解析式,即可得到所求值.
解答: 解:函數(shù)f(x)是定義在R上的奇函數(shù),其最小正周期為3,
則有f(-x)=-f(x),f(x+3)=f(x),
f(2014)=f(3×671+1)=f(1)=-f(-1),
由于x∈(-
3
2
,0),f(x)=log2(-3x+1),
則f(-1)=log2(3+1)=2,
故f(2014)=-2.
故答案為:-2.
點評:本題主要考查函數(shù)奇偶性和周期性的性質(zhì)及運用,考查函數(shù)值的求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,an=4n-3,則公差d的值為( 。
A、3B、1C、4D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若an=27-4n,求{|an|}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有一個容量為200的樣本,其斜率分布直方圖如圖所示,樣本數(shù)據(jù)在[8,10)內(nèi)的頻數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an=3an-1+3n-1(n∈N,n≥2)且a3=95.
(1)求a1,a2的值;
(2)是否存在一個實數(shù)t,使得bn=
1
3n
(an+t)(n∈N)且{bn}為等差數(shù)列?若存在,求出t的值,如不存在,請說明理由;
(3)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ln(x+1)-ln(1-x),x∈(-1,1),現(xiàn)有下列命題:
①f(-x)=-f(x);②f(
2x
1+x2
)=2f(x)
;③f(x)在(-1,1)上是增函數(shù),
其中正確命題的序號是(  )
A、①②③B、②③C、①③D、①②

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的圖象如圖所示,則最大、最小值分別為( 。
A、f(
3
2
),f(-
3
2
B、f(0),f(
3
2
C、f(0),f(-
3
2
D、f(0),f(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列圖形中不可能是三棱柱在平面上的投影的是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單調(diào)遞增的等比數(shù)列{an}滿足:a2+a3+a4=28,且a3+2是a2,a4的等差中項.
(1)求數(shù)列{an}的通項公式;
(2)記數(shù)列{an}前n項的和為Sn,若數(shù)列{bn}滿足bn=anlog2(Sn+2),試求數(shù)列{bn}前n項的和Tn

查看答案和解析>>

同步練習(xí)冊答案