過點(
3
,-2)且傾斜角為120°的直線l,與圓x2+y2-2y=0的位置關(guān)系是(  )
A、相交B、相切
C、相離D、位置關(guān)系不確定
考點:直線與圓的位置關(guān)系
專題:直線與圓
分析:求出直線方程,根據(jù)直線和圓的位置關(guān)系即可得到結(jié)論.
解答: 解:過點(
3
,-2)且傾斜角為120°的直線l的斜率k=tan120°=-
3
,
則對應(yīng)的方程為y+2=-
3
(x-
3
)=-
3
x+3,
3
x+y-1=0,
則圓的標(biāo)準(zhǔn)方程為x2+(y-1)2=1,
則圓心C(0,1),半徑R=1,
則圓心到直線的距離d=
|1-1|
(
3
)2+1
=0
<R,
故直線和圓相交,
故選:A
點評:本題主要考查直線和圓的位置關(guān)系的判斷,根據(jù)條件求出直線方程,求出點到直線的距離是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點P為雙曲線x2-
y2
12
=1上的一點,F(xiàn)1,F(xiàn)2是該雙曲線的左、右焦點,若△PF1F2 的面積為12,則∠F1PF2等于( 。
A、
π
4
B、
π
3
C、
π
2
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)已知極坐標(biāo)的極點在直角坐標(biāo)系的原點O處,極軸與x軸的正半軸重合,曲線C的參數(shù)方程為
x=2cosθ
y=sinθ
,直線l的極坐標(biāo)方程為ρsin(θ-
π
4
)=
2
,則直線l與曲線C的交點個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:7
33
-3
324
-6
3
1
9
+
43
33
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列式子:13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根據(jù)以上式子可猜想:13+23+33+…+n3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(0,0,0),B(1,1,1),C(1,2,-1),下列四個點中在平面ABC內(nèi)的點是( 。
A、(2,3,1)
B、(1,-1,2)
C、(1,2,1)
D、(1,0,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=2x2+ax+1-3a是定義域為R的偶函數(shù),則函數(shù)f(x)的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題是( 。
A、存在x∈[0,
π
2
],使sinx+cosx>
2
B、存在x∈(3,+∞),使2x+1≥x2
C、存在x∈R,使x2=x-1
D、對任意x∈(0,
π
2
],使sinx<x

查看答案和解析>>

同步練習(xí)冊答案