已知的導(dǎo)函數(shù)的簡圖,它與軸的交點(diǎn)是(0,0)和(1,0),
又
(1)求的解析式及的極大值.
(2)若在區(qū)間(m>0)上恒有≤x成立,求m的取值范圍.
(1),1;(2) .
解析試題分析:(1)由圖象和 與軸的交點(diǎn)是(0,0)和(1,0),可知f(x)在區(qū)間[0,1]上是增函數(shù),在區(qū)間(-∞,0),(1,+∞)上是減函數(shù),則有f'(0)=f'(1)=0,再由,即可求解;(2)首先將“f(x)≤x,x∈[0,m]成立”轉(zhuǎn)化為“x(2x-1)(x-1)≥0,x∈[0,m]成立”,即可求解.
(1),由已知,
即解得
,,有圖像可知極大值為 6分
(2)令,即,
,或.
又在區(qū)間上恒成立, 12分
考點(diǎn):1.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;2.函數(shù)解析式的求解及常用方法;3.函數(shù)恒成立問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=ln x--ln a(x>0,a>0且為常數(shù)).
(1)當(dāng)k=1時(shí),判斷函數(shù)f(x)的單調(diào)性,并加以證明;
(2)當(dāng)k=0時(shí),求證:f(x)>0對(duì)一切x>0恒成立;
(3)若k<0,且k為常數(shù),求證:f(x)的極小值是一個(gè)與a無關(guān)的常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線滿足下列條件:
①過原點(diǎn);②在處導(dǎo)數(shù)為-1;③在處切線方程為.
(1) 求實(shí)數(shù)的值;
(2)求函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
水庫的蓄水量隨時(shí)間而變化,現(xiàn)用表示時(shí)間,以月為單位,年初為起點(diǎn),根據(jù)歷年數(shù)據(jù),某水庫的蓄水量(單位:億立方米)關(guān)于的近似函數(shù)關(guān)系式為
(1)該水庫的蓄求量小于50的時(shí)期稱為枯水期.以表示第1月份(),同一年內(nèi)哪幾個(gè)月份是枯水期?
(2)求一年內(nèi)該水庫的最大蓄水量(取計(jì)算).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=ln x-.
(1)當(dāng)a>0時(shí),判斷f(x)在定義域上的單調(diào)性;
(2)f(x)在[1,e]上的最小值為,求實(shí)數(shù)a的值;
(3)試求實(shí)數(shù)a的取值范圍,使得在區(qū)間(1,+∞)上函數(shù)y=x2的圖象恒在函數(shù)y=f(x)圖象的上方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=ex-ax-2.
(1)求f(x)的單調(diào)區(qū)間;
(2)若a=1,k為整數(shù),且當(dāng)x>0時(shí),(x-k)f′(x)+x+1>0,求k的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com