設(shè)函數(shù)f(x)=ex-ax-2.
(1)求f(x)的單調(diào)區(qū)間;
(2)若a=1,k為整數(shù),且當(dāng)x>0時,(x-k)f′(x)+x+1>0,求k的最大值.

(1)f(x)在(-∞,ln a)上單調(diào)遞減,在(ln a,+∞)上單調(diào)遞增.
(2)2

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求證:對于任意的,都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的導(dǎo)函數(shù)的簡圖,它與軸的交點(diǎn)是(0,0)和(1,0),


(1)求的解析式及的極大值.
(2)若在區(qū)間(m>0)上恒有≤x成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知A、B、C是直線l上不同的三點(diǎn),O是l外一點(diǎn),向量滿足:記y=f(x).
(1)求函數(shù)y=f(x)的解析式:
(2)若對任意不等式恒成立,求實數(shù)a的取值范圍:
(3)若關(guān)于x的方程f(x)=2x+b在(0,1]上恰有兩個不同的實根,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,其中e為自然對數(shù)的底數(shù).
(1)若是增函數(shù),求實數(shù)的取值范圍;
(2)當(dāng)時,求函數(shù)上的最小值;
(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),曲線在點(diǎn)處的切線方程為
(1)求、的值;
(2)如果當(dāng),且時,,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)滿足(其中在點(diǎn)處的導(dǎo)數(shù),為常數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間
(2)設(shè)函數(shù),若函數(shù)上單調(diào),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),當(dāng)時, (其中e是自然界對數(shù)的底,)
(1)求的解析式;
(2)設(shè),求證:當(dāng)時,且,恒成立;
(3)是否存在實數(shù)a,使得當(dāng)時,的最小值是3 ?如果存在,求出實數(shù)a的值;如果不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),滿足,且為自然對數(shù)的底數(shù).
(1)已知,求處的切線方程;
(2)若存在,使得成立,求的取值范圍;
(3)設(shè)函數(shù)為坐標(biāo)原點(diǎn),若對于時的圖象上的任一點(diǎn),在曲線上總存在一點(diǎn),使得,且的中點(diǎn)在軸上,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案