已知函數(shù)f(x)=ln x-
(1)當a>0時,判斷f(x)在定義域上的單調(diào)性;
(2)f(x)在[1,e]上的最小值為,求實數(shù)a的值;
(3)試求實數(shù)a的取值范圍,使得在區(qū)間(1,+∞)上函數(shù)y=x2的圖象恒在函數(shù)y=f(x)圖象的上方.

(1)f(x)在(0,+∞)上是單調(diào)遞增函數(shù)
(2)a=-    (3)a≥-1

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),.
(1)討論內(nèi)和在內(nèi)的零點情況.
(2)設內(nèi)的一個零點,求上的最值.
(3)證明對恒有.[來

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中.
(1)若,求函數(shù)的極值;
(2)當時,試確定函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知的導函數(shù)的簡圖,它與軸的交點是(0,0)和(1,0),


(1)求的解析式及的極大值.
(2)若在區(qū)間(m>0)上恒有≤x成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


(1)若求函數(shù)的極值點及相應的極值;
(2)若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知A、B、C是直線l上不同的三點,O是l外一點,向量滿足:記y=f(x).
(1)求函數(shù)y=f(x)的解析式:
(2)若對任意不等式恒成立,求實數(shù)a的取值范圍:
(3)若關(guān)于x的方程f(x)=2x+b在(0,1]上恰有兩個不同的實根,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,其中e為自然對數(shù)的底數(shù).
(1)若是增函數(shù),求實數(shù)的取值范圍;
(2)當時,求函數(shù)上的最小值;
(3)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)滿足(其中在點處的導數(shù),為常數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間
(2)設函數(shù),若函數(shù)上單調(diào),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(1)求的單調(diào)區(qū)間和極值;
(2)若關(guān)于的方程有3個不同實根,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案