【題目】選修4-5:不等式選講設(shè)函數(shù)

(1)當(dāng)時,解不等式:;

(2)若關(guān)于x的不等式fx)≤4的解集為[﹣1,7],且兩正數(shù)st滿足,求證:

【答案】(1)(2)見解析

【解析】試題分析:(1)先根據(jù)絕對值定義將不等式化為三個不等式組,分別求解,最后求并集,(2)先根據(jù)不等式解集得對應(yīng)方程解求參數(shù),再根據(jù)1的代換,利用基本不等式進(jìn)行證明.

試題解析:當(dāng)a=2時,不等式:f(x)≥6﹣|2x﹣5|,可化為|x﹣2|+|2x﹣5|≥6.

①x≥2.5時,不等式可化為x﹣2+2x﹣5≥6,∴x≥;

②2≤x<2.5,不等式可化為x﹣2+5﹣2x≥6,∴x∈;

x<2,不等式可化為2﹣x+5﹣2x≥6,∴x≤,

綜上所述,不等式的解集為(﹣];

(Ⅱ)證明:不等式f(x)≤4的解集為[a﹣4,a+4]=[﹣1,7],∴a=3,

=)(2s+t)=(10++)≥6,當(dāng)且僅當(dāng)s=,t=2時取等號

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列結(jié)論:

①若,則“”成立的一個充分不必要條件是“,且”;

②存在,使得;

③若函數(shù)的導(dǎo)函數(shù)是奇函數(shù),則實數(shù);

④平面上的動點到定點的距離比軸的距離大1的點的軌跡方程為.

其中正確結(jié)論的序號為_________.(填寫所有正確的結(jié)論序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的中心為原點O,長軸在x軸上,離心率,過左焦點F1x軸的垂線交橢圓于A兩點

Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程;

Ⅱ)取垂直于x軸的直線與橢圓相交于不同的兩點P,,過P、作圓心為Q的圓,使橢圓上的其余點均在圓Q外.若,求圓Q的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求證:函數(shù)有唯一零點;

(2)若對任意恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉行了一次環(huán)保知識競賽活動. 為了了解本次競賽學(xué)生成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)得分取正整數(shù),滿分為100分作為樣本樣本容量為進(jìn)行統(tǒng)計. 按照[50,60,[60,70,[70,80,[80,90,[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖圖中僅列出了得分在[50,60,[90,100]的數(shù)據(jù).

1求樣本容量和頻率分布直方圖中的的值;

2在選取的樣本中,從競賽成績是80分以上含80分的同學(xué)中隨機(jī)抽取3名同學(xué)到市政廣場參加環(huán)保知識宣傳的志愿者活動,設(shè)表示所抽取的3名同學(xué)中得分在[80,90的學(xué)生人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),曲線在點處的切線與直線垂直.

(1)求的值;

(2)若對于任意的恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為提高黔東南州的整體旅游服務(wù)質(zhì)量,州旅游局舉辦了黔東南州旅游知識競賽,參賽單位為本州內(nèi)各旅游協(xié)會,參賽選手為持證導(dǎo)游.現(xiàn)有來自甲旅游協(xié)會的導(dǎo)游3名,其中高級導(dǎo)游2名;乙旅游協(xié)會的導(dǎo)游5名,其中高級導(dǎo)游3名.從這8名導(dǎo)游中隨機(jī)選擇4人 參加比賽.

(Ⅰ)設(shè)為事件“選出的4人中恰有2名高級導(dǎo)游,且這2名高級導(dǎo)游來自同一個旅游協(xié)會”,求事件發(fā)生的概率.

(Ⅱ)設(shè)為選出的4人中高級導(dǎo)游的人數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[2018·石家莊一檢]已知函數(shù)

(1)若,求函數(shù)的圖像在點處的切線方程;

(2)若函數(shù)有兩個極值點,,且,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線a與平面所成角的為30o,直線b在平面內(nèi)且與b異面,若直線a與直線b所成的角為,則( )

A. 0<≤30 B. 0<≤90 C. 30≤≤90 D. 30≤≤180

查看答案和解析>>

同步練習(xí)冊答案