4.直線2x+3y-8=0與直線2x+3y+18=0之間的距離為$2\sqrt{13}$.

分析 利用平行線之間的距離公式即可得出.

解答 解:直線2x+3y-8=0與直線2x+3y+18=0之間的距離d=$\frac{|-8-18|}{\sqrt{{2}^{2}+{3}^{2}}}$=2$\sqrt{13}$.
故答案為:2$\sqrt{13}$.

點評 本題考查了平行線之間的距離公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.袋子中裝有大小相同的4個球,其中2個紅球和2個白球.游戲一,從袋中取一個球,若取出的是紅球則甲獲勝,否則乙獲勝;游戲二,從袋中無放回地取一個球后再取一個球,若取出的兩個球同色則甲獲勝,否則乙獲勝,則兩個游戲( 。
A.只有游戲一公平B.只有游戲二公平
C.兩個游戲都不公平D.兩個游戲都公平

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在正方體ABCD-A1B1C1D1中,E是棱D1C1的中點,則異面直線D1B、EC的夾角的余弦值為( 。
A.$\frac{{\sqrt{10}}}{10}$B.$\frac{{\sqrt{10}}}{10}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{{\sqrt{15}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在函數(shù)①y=2x;  ②y=2-2x;③f(x)=x+x-1;  ④f(x)=x-x-3中,存在零點且為奇函數(shù)的序號是④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.m,n是空間兩條不同直線,α,β是兩個不同平面,下面有四個命題:
①m⊥α,n∥β,α∥β⇒m⊥n
②m⊥n,α∥β,m⊥α⇒n∥β
③m⊥n,α∥β,m∥α⇒n⊥β
④m⊥α,m∥n,α∥β⇒n⊥β
其中真命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}各項均為正數(shù),其前n項和為Sn,且滿足$4{S_n}={({a_n}+1)^2}$.
(1)求{an}的通項公式;
(2)設(shè)${b_n}=\frac{1}{{{a_n}•{a_{n+1}}}}$,數(shù)列{bn}的前n項和為Tn,求Tn的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知命題p:“曲線C1=$\frac{{x}^{2}}{{m}^{2}}+\frac{{y}^{2}}{2m+8}$=1表示焦點在x軸上的橢圓”,命題q:“曲線C2:$\frac{{x}^{2}}{m-t}+\frac{{y}^{2}}{m-t-1}=1$表示雙曲線”.
(1)若命題p是真命題,求m的取值范圍;
(2)若p是q的必要不充分條件,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.為推行“新課堂”教學(xué)法,某地理老師分別用傳統(tǒng)方法和“新課堂”兩種不同的教學(xué)方法,在甲、乙兩個平行班級進(jìn)行教學(xué)實驗,為了比較教學(xué)效果,期中考試后,分別從兩個班級中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計,結(jié)果如下表:記成績不低于70分者為“成績優(yōu)良”.
分?jǐn)?shù)[50,59)[60,69)[70,79)[80,89)[90,100)
甲班頻數(shù)56441
乙班頻數(shù)1365
(1)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.025的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?
甲班乙班總計
成績優(yōu)良
成績不優(yōu)良
總計
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$,(n=a+b+c+d)
臨界值表:
P(K2≥k00.100.050.0250.010
k02.7063.8415.0246.635
(2)先從上述40人中,學(xué)校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核,在這8人中,記成績不優(yōu)良的乙班人數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知α,β都是銳角,sinα=$\frac{4}{5}$,cosβ=$\frac{5}{13}$,則sin(β-α)=( 。
A.-$\frac{16}{65}$B.$\frac{16}{65}$C.-$\frac{56}{65}$D.$\frac{56}{65}$

查看答案和解析>>

同步練習(xí)冊答案