5.若$\overrightarrow{a}$=(1,x),$\overrightarrow$=(4,-x),則“x∈(0,2)”是“向量$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

分析 利用平面向量的數(shù)量積的符號與向量夾角的余弦值關(guān)系進(jìn)行判斷.

解答 解:若$\overrightarrow{a}$=(1,x),$\overrightarrow$=(4,-x),則$\overrightarrow{a}•\overrightarrow$=4-x2,若x∈(0,2),則4-x2>0,得到向量$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角;
若向量$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角,則$\overrightarrow{a}•\overrightarrow$=4-x2>0,所以-2<x<2;
故$\overrightarrow{a}$=(1,x),$\overrightarrow$=(4,-x),則“x∈(0,2)”是“向量$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角”的充分不必要條件;
故選:A.

點評 根據(jù)平面向量的數(shù)量積符號可以判斷兩個向量的夾角;屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知變量x,y滿足條件$\left\{\begin{array}{l}{x-y+1≤0}\\{x≥-1}\\{y≤1}\end{array}\right.$,則z=3x+2y的最小值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中周期為π且為偶函數(shù)的是( 。
A.y=cos(2x-$\frac{π}{2}$)B.y=sinxcosxC.y=sinx+cosxD.f(x)=|sinx|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)中,與函數(shù)y=$\frac{1}{\sqrt{x+1}}$+$\frac{1}{\sqrt{x(x+2)}}$有相同定義域的是( 。
A.f(x)=|x|B.f(x)=$\frac{1}{x}$C.f(x)=lnxD.f(x)=ex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x3-3x2-9x-3
(1)若函數(shù)f(x)在點(x0,f(x0))處的切線方程為y=-9x+b,求b的值;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=x2-6x+4lnx,則函數(shù)f(x)的增區(qū)間為( 。
A.(-∞,1),(2,+∞)B.(-∞,0),(1,2)C.(0,1),(2,+∞)D.(1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)=x+\frac{a}{x}+lnx(a∈R)$
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若關(guān)于x的函數(shù)$g(x)=\frac{lnx}{x^2}-f(x)+lnx+2e$有且只有一個零點,求a的值(e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知點R(x0,y0)在D:y2=2px上,以R為切點的D的切線的斜率為$\frac{P}{{y}_{0}}$,過Γ外一點A(不在x軸上)作Γ的切線AB、AC,點B、C為切點,作平行于BC的切線MN(切點為D),點M、N分別是與AB、AC的交點(如圖).
(1)用B、C的縱坐標(biāo)s、t表示直線BC的斜率;
(2)設(shè)三角形△ABC面積為S,若將由過Γ外一點的兩條切線及第三條切線(平行于兩切線切點的連線)圍成的三角形叫做“切線三角形”,如△AMN,再由M、N作“切線三角形”,并依這樣的方法不斷作切線三角形…,試?yán)谩扒芯三角形”的面積和計算由拋物線及BC所圍成的陰影部分的面積T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.過三點(3,10),(7,20),(11,24)的線性回歸方程是$\widehaty=5.75+1.75x$.

查看答案和解析>>

同步練習(xí)冊答案