9.若x∈(e-1,1),a=lnx,b=($\frac{1}{2}$)lnx,c=elnx,則a,b,c的大小關(guān)系為b>c>a.

分析 根據(jù)指數(shù)冪和對數(shù)的性質(zhì)進(jìn)行判斷即可.

解答 解:∵x∈(e-1,1),
∴l(xiāng)nx∈(-1,0),
則函數(shù)f(t)=tlnx,為減函數(shù),
∴f($\frac{1}{2}$)>f(e)>0,
即b>c>a,
故答案為:b>c>a;

點評 本題主要考查函數(shù)值的大小比較,根據(jù)指數(shù)函數(shù),對數(shù)函數(shù),冪函數(shù)的性質(zhì)是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在一次數(shù)學(xué)考試中,第22、23、24題為選做題,規(guī)定每位考生必須且只須在其中選做一題.按照以往考試的統(tǒng)計,考生甲,乙的選做各題的概率如表所示,
第22題第23題第24題
$\frac{1}{6}$$\frac{1}{2}$$\frac{1}{3}$

$\frac{2}{3}$$\frac{1}{3}$
(Ⅰ)求甲,乙兩人都選做第23題的概率;
(Ⅱ)求甲,乙兩人選做不同試題的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,邊長為1的菱形ABCD中,∠DAB=60°,沿BD將△ABD翻折,得到三棱錐A-BCD,則當(dāng)三棱錐A-BCD體積最大時,異面直線AD與BC所成的角的余弦值為( 。
A.$\frac{5}{8}$B.$\frac{1}{4}$C.$\frac{13}{16}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1}{2}$x2-alnx+(a-1)x,其中a∈R.
(Ⅰ)當(dāng)a≤0時,討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若對任意x1,x2∈(1,∞),且x1≠x2,$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>-1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求函數(shù)y=cos2x+sinx.(1)x∈R.(2)-$\frac{π}{4}$≤x≤$\frac{π}{4}$的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.直線l:kx-y+1=0被圓x2+y2-4y=0截得的最短弦長為( 。
A.$2\sqrt{3}$B.3C.$2\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知不等式組$\left\{{\begin{array}{l}{x+y≤1}\\{x-y≥-1}\\{y≥0}\end{array}}\right.$,所表示的平面區(qū)域為D,若直線y=ax-2與平面區(qū)域D有公共點,則實數(shù)a的取值范圍為( 。
A.[-2,2]B.(-∞,-$\frac{1}{2}$]∪[$\frac{1}{2}$,+∞)C.(-∞,-2]∪[2,+∞)D.[-$\frac{1}{2}$,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知中心在原點,焦點在x軸上的橢圓的一個焦點為($\sqrt{3}$,0),(1,$\frac{{\sqrt{3}}}{2}$)是橢圓上的一個點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的上、下頂點分別為A,B,P(x0,y0)(x0≠0)是橢圓上異于A,B的任意一點,PQ⊥y軸,Q為垂足,M為線段PQ中點,直線AM交直線l:y=-1于點C,N為線段BC的中點,如果△MON的面積為$\frac{3}{2}$,求y0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)y=f(t)是某港口水的深度關(guān)于時間t(時)的函數(shù),其中0≤t≤24,下表是該港口某一天從0至24時記錄的時間t與水深y的關(guān)系.
t03691215182124
y1215.112.19.111.914.911.98.912.1
經(jīng)長期觀察,函數(shù)y=f(t)的圖象可以近似地看成函數(shù)y=k+Asin(ωt+φ)的圖象.
根據(jù)上述數(shù)據(jù),函數(shù)y=f(t)的解析式為$y=3sin\frac{π}{6}t+12$.

查看答案和解析>>

同步練習(xí)冊答案