A. | $\frac{5}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{13}{16}$ | D. | $\frac{2}{3}$ |
分析 菱形ABCD中,∠DAB=60°,△ABD、△CBD為邊長為1的等邊三角形,將△ABD沿BD翻折過程中,點A在底面BDC的投影在∠DCB的平分線上,三棱錐的高最大時,平面ABD⊥平面BCD.
解答 解:△ABD、△CBD為邊長為1的等邊三角形,將△ABD沿BD翻折形成三棱錐A-BCD如圖:
點A在底面BDC的投影在∠DCB的平分線CE上,則三棱錐A-BCD的高為△AEC過A點的高;
所以當平面ABD⊥平面BCD時,三棱錐A-BCD的高最大,體積也最大,此時AE⊥平面BCD;
求異面直線AD與BC所成的角的余弦值:
平移BC到DC′位置,|cos∠ADC′|即為所求,
AD=DC=1,AE=$\frac{\sqrt{3}}{2}$,EC′=$\frac{\sqrt{7}}{2}$,AC′=$\frac{\sqrt{10}}{2}$
|cos∠ADC′|=|$\frac{1+1-\frac{10}{4}}{2×1×1}$|=$\frac{1}{4}$,
所以異面直線AD與BC所成的角的余弦值為$\frac{1}{4}$,
故選B.
點評 本題考查異面直線所成角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{π}{3}$,π) | B. | ($\frac{π}{6}$,$\frac{π}{3}$) | C. | ($\frac{π}{6}$,$\frac{π}{2}$) | D. | [$\frac{π}{3}$,$\frac{π}{2}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30 | B. | 32 | C. | 36 | D. | 48 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com