如圖,在正方體ABCD-A1B1C1D1中,E是AA1的中點(diǎn).
(Ⅰ)求證:A1C∥平面BDE;
(Ⅱ)求證:平面A1AC⊥平面BDE;
(Ⅲ)求直線BE與平面A1AC所成角的正弦值.
考點(diǎn):直線與平面所成的角,平面與平面垂直的判定
專題:空間位置關(guān)系與距離
分析:(Ⅰ)根據(jù)線面平行的判定定理即可證明A1C∥平面BDE;
(Ⅱ)根據(jù)面面垂直的判定定理即可證明平面A1AC⊥平面BDE;
(Ⅲ)求出直線BE與平面A1AC所成角,然后根據(jù)三角形的邊角關(guān)系即可求出結(jié)論.
解答: 解:(Ⅰ)設(shè)AC∩BD=O,
∵E、O分別是AA1、AC的中點(diǎn),
∴A1C∥EO
又A1C?平面BDE,EO?平面BDE,
∴A1C∥平面BDE
(Ⅱ)∵AA1⊥平面ABCD,BD?平面ABCD,AA1⊥BD,
又BD⊥AC,AC∩AA1=A,
∴BD⊥平面A1AC,
BD?平面BDE,
∴平面BDE⊥平面A1AC
(Ⅲ)由(Ⅱ)可知直線BE與平面A1AC所成角是∠BEO
設(shè)正方體棱長為a,在Rt△BOE中,EO=
2
2
a,BE=
5
2
a
,
sin∠BEO=
10
5
即直線BE與平面A1AC所成角的正弦值為
10
5
點(diǎn)評(píng):本題主要考查線面平行和面面垂直的判斷以及直線和平面所成角的求解,要求熟練掌握相應(yīng)的判定定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

2014年推出一種新型家用轎車,購買時(shí)費(fèi)用為14.4萬元,每年應(yīng)交付保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽車油費(fèi)共0.7萬元,
汽車維修費(fèi)為:第一年無維修費(fèi)用,第二年為0.2萬元,從第三年起,每年的維修費(fèi)用均比上一年增加0.2萬元
(1)設(shè)該輛轎車使用n年的總費(fèi)用(包括購買費(fèi)用,保險(xiǎn)費(fèi),養(yǎng)路費(fèi),汽車費(fèi)及維修費(fèi))為f(n),求f(n)的表達(dá)式.
(2)這種汽車使用多少年報(bào)廢最合算(即該車使用多少年,年平均費(fèi)用最少)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}為等差數(shù)列,且a5=14,a7=20,數(shù)列{bn}的前n項(xiàng)和為Sn=2n-1(n∈N*),
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)若cn=an•bn=1,2,3,…,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AA1,AC=
2
BC
,點(diǎn)D是AB的中點(diǎn).
(1)證明:AC1∥平面B1CD;
(2)證明:B1C⊥平面ABC1;
(3)證明:平面ABC1⊥平面B1CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
1
3
x3+x2-3x+1
(Ⅰ)求曲線y=f(x)在(2,f(2))處的切線方程.
(Ⅱ)求y=f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)在其一個(gè)周期內(nèi)的圖象上有一個(gè)最高點(diǎn)(
π
12
,3)和一個(gè)最低點(diǎn)(
12
,-3).
(Ⅰ)求A,ω,φ;
(Ⅱ)求y=f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}和{bn}是公比不相等的兩個(gè)等比數(shù)列,cn=an+bn.求證:數(shù)列{cn}不是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若不等式|x-4|-|x+1|≤a的解集為R,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實(shí)數(shù)x,y滿足不等式組
x-y+5≥0
x+y≥0
x≤3
,則z=2x-4y的最小值是
 

查看答案和解析>>

同步練習(xí)冊答案