已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)在其一個(gè)周期內(nèi)的圖象上有一個(gè)最高點(diǎn)(
π
12
,3)和一個(gè)最低點(diǎn)(
12
,-3).
(Ⅰ)求A,ω,φ;
(Ⅱ)求y=f(x)的單調(diào)增區(qū)間.
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的圖像與性質(zhì)
分析:(Ⅰ)由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由頂點(diǎn)的坐標(biāo)求出φ的值.
(Ⅱ)由(Ⅰ)可得y=f(x)=3sin(2x+
π
3
),令 2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
k∈z,求得x的范圍,可得函數(shù)的增區(qū)間.
解答: 解:(Ⅰ)由題意可知:A=3,
T
2
=
12
-
π
12
=
π
2
,∴T=π=
ω
,求得ω=2.
再根據(jù)最高點(diǎn)的坐標(biāo)可得2(
π
12
)+φ=
π
2
+2kπ,k∈Z
,∴φ=
π
3
+2kπ
,k∈Z.
結(jié)合,|φ|<π,可得φ=
π
3

(Ⅱ)由(Ⅰ)可得y=f(x)=3sin(2x+
π
3
),
令 2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
 k∈z,求得 kπ-
12
≤x≤kπ+
π
12
,
可得函數(shù)的增區(qū)間為[kπ-
12
,kπ+
π
12
],k∈z.
點(diǎn)評(píng):本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,正弦函數(shù)的增區(qū)間,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由頂點(diǎn)的坐標(biāo)求出φ的值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB是圓O的直徑,BC是圓O的切線,切點(diǎn)為B,OC平行于弦AD.
(Ⅰ)求證∠ADO=∠COB;
(Ⅱ)若OB=3,OC=5,求CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,P是圓O外的一點(diǎn),PA為切線,A為切點(diǎn),割線PBC經(jīng)過(guò)圓心O,PC=6,PA=2
3
,則∠PCA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直三棱柱ABC-A1B1C1中,AC=BC=BB1=1,AB=
2

(Ⅰ)求證:平面AB1C⊥平面B1CB;
(Ⅱ)求三棱錐A1-AB1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E是AA1的中點(diǎn).
(Ⅰ)求證:A1C∥平面BDE;
(Ⅱ)求證:平面A1AC⊥平面BDE;
(Ⅲ)求直線BE與平面A1AC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖四棱錐S-ABCD,底面ABCD是正方形,SD⊥底面ABCD,M為SC的中點(diǎn).
(1)求證:SA∥平面MBD
(2)證明:平面SAC⊥平面SBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求和:Sn=1+(1+
1
2
)+(1+
1
2
+
1
4
)+[1+
1
2
+
1
4
+…+(
1
2
n-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿足f(x+5)=f(x).當(dāng)-3<x≤-1時(shí),f(x)=x,當(dāng)-1<x≤2時(shí),f(x)=(x-1)2,則f(1)+f(2)+f(3)+…+f(2014)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從{1,2,3,4,5}中隨機(jī)選取一個(gè)數(shù)為a,從{2,4,6}中隨機(jī)選取一個(gè)數(shù)為b,則b>a的概率是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案