(本小題滿分14分)
等比數(shù)列的各項(xiàng)均為正數(shù),成等差數(shù)列,且
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和

(1) 設(shè)等比數(shù)列的公比為,依題意,有
 
所以 
由于,,解之得 
,所以
所以數(shù)列的通項(xiàng)公式為).
(2)解:由(1),得
所以
所以


故數(shù)列的前項(xiàng)和
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

《萊因德紙草書(shū)》(Rhind Papyrus)是世界上最古老的數(shù)學(xué)著作之一.書(shū)中有一道這樣的題目:把100個(gè)面包分給五人,使每人成等差數(shù)列,且使最大的三份之和的是較小的兩份之和,則最小1份的大小是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分8分)計(jì)算

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在數(shù)列中,其前n項(xiàng)和為,若對(duì)任意的正整數(shù),均有,則      ;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.(本題滿分12分)已知函數(shù)
(1)求時(shí)的取值范圍;
(2)若對(duì)任意成立;
(ⅰ)求證是等比數(shù)列;
(ⅱ)令,求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的相鄰兩項(xiàng)是關(guān)于的方程的兩根,且
(1)求證:數(shù)列是等比數(shù)列;
(2)求數(shù)列的前項(xiàng)和;
(3)若對(duì)任意的都成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知為等比數(shù)列,為等差數(shù)列的前n項(xiàng)和,
(1)求的通項(xiàng)公式;
(2)設(shè),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列的前n項(xiàng)和,則的值為(    )
A.80B.40C.20D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列的前項(xiàng)和,則          

查看答案和解析>>

同步練習(xí)冊(cè)答案