【題目】某年級教師年齡數(shù)據(jù)如下表:
年齡(歲) | 人數(shù)(人) |
22 | 1 |
28 | 2 |
29 | 3 |
30 | 5 |
31 | 4 |
32 | 3 |
40 | 2 |
合計 | 20 |
(1)求這20名教師年齡的眾數(shù)與極差;
(2)以十位數(shù)為莖,個位數(shù)為葉,作出這20名教師年齡的莖葉圖;
(3)現(xiàn)在要在年齡為29歲和31歲的教師中選2位教師參加學(xué)校有關(guān)會議,求所選的2位教師年齡不全相同的概率.
【答案】(1)30,18;(2)見解析;(3)
【解析】試題分析:
(1)由所給的年齡數(shù)據(jù)可得這20名教師年齡的眾數(shù)為30,極差為18.
(2)結(jié)合所給的數(shù)據(jù)繪制莖葉圖即可;
(3)由題意可知,其中任選2名教師共有21種選法,所選的2位教師年齡不全相同的選法共有12種,結(jié)合古典概型計算公式可得所求概率值為.
試題解析:
(1)年齡為30歲的教師人數(shù)為5,頻率最高,故這20名教師年齡的眾數(shù)為30,極差為最大值與最小值的差,即40-22=18.
(2)
(3)設(shè)事件“所選的2位教師年齡不全相同”為事件A.年齡為29,31歲的教師共有7名,從其中任選2名教師共有=21種選法,3名年齡為29歲的教師中任選2名有3種選法,4名年齡為31歲的教師中任選2名有6種選法,所以所選的2位教師年齡不全相同的選法共有21-9=12種,所以P(A)==.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,
(Ⅰ)求證:AC⊥A1B;
(Ⅱ)求二面角A﹣A1C﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(均為整數(shù))分成六組,…后,畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(Ⅰ)求成績落在上的頻率,并補全這個頻率分布直方圖;
(Ⅱ)估計這次考試的及格率(60分及以上為及格)和平均分;
(Ⅲ)為調(diào)查某項指標(biāo),從成績在60~80分,這兩分?jǐn)?shù)段組的學(xué)生中按分層抽樣的方法抽取6人,再從這6人中選2人進(jìn)行對比,求選出的這2名學(xué)生來自同一分?jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹棵數(shù)。乙組記錄中有一個數(shù)據(jù)模糊,無法確認(rèn),在圖中經(jīng)X表示。
(1)如果X=8,求乙組同學(xué)植樹棵數(shù)的平均數(shù)和方差
(2)如果X=9,分別從甲、乙兩組中隨機選取一名同學(xué),求這兩名同學(xué)的植樹總棵數(shù)為19的概率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是奇函數(shù),
(1)求實數(shù)m的值;
(2)判斷函數(shù)的單調(diào)性并用定義法加以證明;
(3)若函數(shù)在上的最小值為,求實數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個四位數(shù)的各位數(shù)碼都是非零的偶數(shù),且它的算術(shù)平方根恰是一個二位數(shù),該二位數(shù)的兩個數(shù)碼也都是非零偶數(shù). 則這個四位數(shù)是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題恒成立;命題方程表示雙曲線.
(1)若命題為真命題,求實數(shù)的取值范圍;
(2)若命題“”為真命題,“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個正方體圖形中,A,B為正方體的兩個頂點,M,N,P分別為其所在棱的中點,能得出AB∥平面MNP的圖形的個數(shù)有( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面是邊長為1的正方形,垂直于底面,.
(1)求證;
(2)求平面與平面所成二面角的大;
(3)設(shè)棱的中點為,求異面直線與所成角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com