已知數(shù)列滿足,且對任意非負(fù)整數(shù)均有:.
(1)求;
(2)求證:數(shù)列是等差數(shù)列,并求的通項(xiàng);
(3)令,求證:.
:(1),;(2);(3)詳見解析.
解析試題分析:(1)對m、n賦值,想方設(shè)法將條件變出.為了得到,顯然令m=n即可.
為了得到,令m=1,n=0即可.
(2)首先要想辦法得相鄰兩項(xiàng)(三項(xiàng)也可)間的遞推關(guān)系.
要證數(shù)列是等差數(shù)列,只需證明為常數(shù)即可.
(3)數(shù)列中有關(guān)和的不等式的證明一般有以下兩種方向,一是先求和后放縮,二是先放縮后求和.在本題中,易得,∴
這是典型的用裂項(xiàng)法求和的題.故先求出和來,然后再用放縮法證明不等式.
試題解析:(1)令得, 1分
令,得,∴ 3分
(2)令,得:
∴,又,
∴數(shù)列是以2為首項(xiàng),2為公差的等差數(shù)列.
∴
∴
∴ 9分
(3)∴
∴ 13分
考點(diǎn):1、遞推數(shù)列;2、等差數(shù)列;3、不等式的證明.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)正數(shù)列的前項(xiàng)和為,且.
(1)求數(shù)列的首項(xiàng);
(2)求數(shù)列的通項(xiàng)公式;
(3)設(shè),是數(shù)列的前項(xiàng)和,求使得對所有都成立的最小正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知直角的三邊長,滿足
(1)已知均為正整數(shù),且成等差數(shù)列,將滿足條件的三角形的面積從小到大排成一列,且,求滿足不等式的所有的值;
(2)已知成等比數(shù)列,若數(shù)列滿足,證明數(shù)列中的任意連續(xù)三項(xiàng)為邊長均可以構(gòu)成直角三角形,且是正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知:等差數(shù)列{an}中,a3+a4=15,a2a5=54,公差d<0.
(I)求數(shù)列{an}的通項(xiàng)公式an;
(II)求數(shù)列的前n項(xiàng)和Sn的最大值及相應(yīng)的n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的通項(xiàng)公式為,在等差數(shù)列數(shù)列中,,且,又、、成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知公差不為零的等差數(shù)列的前3項(xiàng)和,且、、成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式及前n項(xiàng)的和;
(2)設(shè)的前n項(xiàng)和,證明:;
(3)對(2)問中的,若對一切恒成立,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知為等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式及其前項(xiàng)和;
(Ⅱ)若數(shù)列滿足求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com