已知數(shù)列的通項公式為,在等差數(shù)列數(shù)列中,,且,又、、成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)求數(shù)列的前項和.

(1);(2).

解析試題分析:(1)先由求出,并根據(jù)數(shù)列的通項公式求出前三項的值,并設(shè)數(shù)列的公差為,根據(jù)題中條件求出,注意根據(jù)題中的條件對的值進行取舍,從而求出數(shù)列的通項公式,最終確定數(shù)列的通項公式;(2)在(1)的基礎(chǔ)上,利用錯位相減法求數(shù)列的前項和.
試題解析:(1)設(shè)等差數(shù)列的公差為,對任意,,則,
由于,所以
,,
因此,,
由于、、成等比數(shù)列,,
,整理得,由于,則,
,
;
(2),              ①
, ②
①得,



,
.
考點:1.利用基本量法求等差數(shù)列的通項;2.錯位相減法求和

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

數(shù)列的每一項都是正數(shù),,,且、、成等差數(shù)列,、、成等比數(shù)列,.
(Ⅰ)求、的值;
(Ⅱ)求數(shù)列、的通項公式;
(Ⅲ)記,證明:對一切正整數(shù),有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)是各項均為非零實數(shù)的數(shù)列的前項和,給出如下兩個命題上:
命題是等差數(shù)列;命題:等式對任意)恒成立,其中是常數(shù)。
⑴若的充分條件,求的值;
⑵對于⑴中的,問是否為的必要條件,請說明理由;
⑶若為真命題,對于給定的正整數(shù))和正數(shù)M,數(shù)列滿足條件,試求的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列中,公差,其前項和為,且滿足:
(1)求數(shù)列的通項公式;
(2)令,,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列滿足,且對任意非負整數(shù)均有:.
(1)求
(2)求證:數(shù)列是等差數(shù)列,并求的通項;
(3)令,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)為數(shù)列的前項和,且有
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若數(shù)列是單調(diào)遞增數(shù)列,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前項和為,且,數(shù)列滿足,且點在直線上.
(1)求數(shù)列、的通項公式;
(2)求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列的前n項和為,且,.
(1)求數(shù)列的通項;(2)設(shè),求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如果項數(shù)均為的兩個數(shù)列滿足且集合,則稱數(shù)列是一對“項相關(guān)數(shù)列”.
(Ⅰ)設(shè)是一對“4項相關(guān)數(shù)列”,求的值,并寫出一對“
關(guān)數(shù)列”;
(Ⅱ)是否存在“項相關(guān)數(shù)列”?若存在,試寫出一對;若不存在,請說明理由;
(Ⅲ)對于確定的,若存在“項相關(guān)數(shù)列”,試證明符合條件的“項相關(guān)數(shù)列”有偶數(shù)對.

查看答案和解析>>

同步練習冊答案